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Heisenbergin ryhmä sub-Riemannin rakenteella varustettuna on malli geomet-
rialle, joka esiintyy niin fysikaalisissa malleissa kuin eri puhtaan matematiikan
osa-alueissa. Työssä tarkastellaan kolmiulotteista Heisenbergin ryhmää, ja keski-
tytään kuvaamaan sen geometriaa algebrallisten lausekkeiden avulla. Heisenber-
gin geometriaa voidaan pitää tasogeometrian yleistyksenä, minkä osoittaminen
on eräs tämän työn tavoitteista.

Sub-Riemannin monistojen peruskäsitteistöä ja yleistä teoriaa esitellään lyhyesti.
Tämän jälkeen määritellään sub-Riemannin rakenne Heisenbergin ryhmälle, ja
esitetään avaruuden perusominaisuudet exponenttikoordinaattien avulla.

Heisenbergin ryhmä upotetaan kompleksiseen avaruuteen, jolloin Heisenbergin
ryhmän algebrallinen sekä metrinen rakenne nähdään upotettuna tunnettuun
avaruuteen. Samaistamalla Heisenbergin ryhmä erään kompleksisen hyperbolisen
avaruuden hyperpinnan kanssa löydetään sub-Riemannin rakennetta säilyttävä
kuvausluokka Heisenbergin ryhmälle. Konformikuvausten metristä teoriaa esitel-
lään lyhyesti, ja todetaan tulos, joka osoittaa sub-Riemannin rakenteen nostavan
tason Möbius-kuvaukset Heisenbergin ryhmän konformiryhmäksi.

Visuaalisen geometrian kielellä määritellään euklidisen eksponenttikuvauksen
vastine Heisenbergin ryhmälle. Lopuksi kytketään hyperbolisen avaruuden visu-
aalisen geometria Heisenbergin ryhmän konformirakenteeseen.
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1 Introduction

The topic of this thesis is the sub-Riemannian geometry of the first Heisenberg
group. The approach that seemed to unify all facets of Heisenberg geometry was
through complex hyperbolic geometry. While the focus will be on finding algebraic
expressions for transformations and geometric objects on the Heisenberg group,
some background theory of sub-Riemannian manifolds, complex geometry and
quasiconformal mappings will be introduced to provide context. The Heisenberg
group can be viewd as a natural noncommutative extension of plane geometry. A
central theme will be the comparison of euclidean geometry and sub-Riemannian
geometry of the Heisenberg group.

Sub-Riemannian geometry is most easily described in terms of control functions,
and it arises in various applications. Section 2.1 introduces this viewpoint, and
contains a brief summary of relevant metric geometry and the topology of sub-
Riemannian manifolds. In section 2.3, the first Heisenberg group is introduced
through its Lie algebra. We then define a canonical set of coordinates for the
Heisenberg group in section 2.4.

Contact Heisenberg geometry is not particularly easy to ’see’, unless one writes
down algebraic formulae geometric objects, or parametrisations in explicit coor-
dinates. This is also true for complex hyperbolic geometry, which is much more
subtle than real hyperbolic geometry. Goldman’s book [3] is an excellent reference
for the many formulae it contains. Section 3.1 contains a concise introduction to
complex hyperbolic geometry. Both the conformal and metric geometry of the
sub-Riemannian Heisenberg group can readily be recovered from an embedding
into the complex hyperbolic space, which is the subject of sections 3.2 and 3.3.

CR geometry is introduced the section 3.4, as it turns out to be the right algebraic
language for describing the contact structure of the embedded Heisenberg group.
In section 3.5 we provide an explicit one point compactification of the Heisenberg
group as the boundary of the complex hyperbolic space. This yields us coordinate
expressions for the natural transformations recovered from the embedding defined
in section 3.2.

A classical application of the theory of conformal maps is the classification of
conformal maps on Rn with n > 2, where the entire conformal group turns out
to be generated by Möbius maps. We will make a slight digression in section 3.6
to give a short review of the metric theory of conformal maps on the Heisenberg
group, based on a paper by Korányi and Reimann [1]. We find that the class of
conformal maps is lifted from the Möbius group of the plane.

In section 4.1 we define a language of visual geometry for studying the metric and
topological properties of the a space, with the point of view shifted from points to
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geodesics. This technique is then applied to the study of the metric structure of
the sub-Riemannian Heisenberg group. Visual geometry of the complex hyperbolic
space turns out to reveal a connection to the conformal geometry of the Heisenberg
group. This connection is established in section 4.2.

1.1 A word on notation and language

Several approaches are used to describe the sub-Riemannian geometry of the
Heisenberg group and consequently, while the language used in the thesis is mostly
standard, concepts from several fields are used. The reader should have a knowl-
edge of undergraduate differential geometry, algebra and analysis in several real
and complex variables, including a familiarity with variational calculus. Essential
terms, which are not standard vocabulary from these areas, will be defined within
the text and highlighted in italics.

We will routinely identify two spaces by a bijective mapping F and use the same
symbol for points and maps, which are F -related. This is commonplace in dif-
ferential geometry, for instance, when one identifies points on a manifold and on
euclidean space through coordinate charts.

Notation and basic theorems about differential geometry and Lie theory come from
J. M. Lee’s book [7]. Notation used in describing complex geometry is adopted
from [3]. For instance, the euclidean inner product on C2 will be denoted by (·, ·),
as the notation 〈·, ·〉 is reserved for the indefinite inner product used in construction
of the complex hyperbolic space.

Context specific omissions will be made when specifying objects and when listing
the properties of explicitly defined objects. As we work predominantly in the
smooth category, manifolds and all objects defined on them are smooth unless
explicitly stated. This includes vector fields, forms, mappings and distributions.
The terms curve and path are used synonymously to mean a piecewise smooth
map from some sub-interval of R (one can usually assume it to be the unit interval
[0, 1]) to a manifold M . The parameter of a path or its domain are usually not
written out explicitly.
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2 Sub-Riemannian Manifolds

2.1 The horizontal structure

Every statement in this section will be made for to three-dimensional manifolds,
even though the general case is entirely analoguous. The aim is to establish the
language of sub-Riemannian geometry before focusing on case of the Heisenberg
group.

Let (M, H) be a pair consisting of a 3-manifold and a two-dimensional distribution
called the horizontal distribution or horizontal structure. Define a local frame
X, Y, Z such that the horizontal structure is spanned by X and Y , and Z gives
the missing direction, or the vertical direction. A frame of this form is said to be
adapted to the distribution. Lie-groups always admit left-invariant global frames,
as left translation is a diffeomorphism. So for the rest of the section, we will assume
that X, Y, Z is a global frame adapted to a horizontal structure H . We will keep
the vector fields X and Y fixed, as the construction of sub-Riemannian manifolds
will depend on this.

A curve γ : [0, T ]−→M will be called admissible, or horizontal, if its derivative at
t belongs to the space Hγ(t)M for all t ∈ [0, T ]. Equivalently we can require that
the curve can be obtained as the integral curve of a controlled vector field of the
form u1X + u2Y , where the control functions u1 and u2 are smooth. Note that L1

integrability follows from smoothness in compact domains, so admissible curves
are rectifiable in the sense that their sub-Riemannian length, which will be defined
in the next section, is finite.

We will say points p, q ∈ M are mutually accessible, if there exists an admissible
path γ connecting p and q. We will denote this property by γ : x y y. The set of
points accessible from point p will be called the accessible set and denoted by Ap.
The smoothness requirement on admissible curves can be loosened into piecewise
smoothness by a smoothing theorem that will be stated later. This is needed to
allow the concatenation of curves needed in many constructions. An immediate
consequence is that admissibility an equivalence relation.

Our first aim is to prove a remarkable theorem on accessibility called Chow’s
accessibility theorem, which gives us a local condition for the property of all points
being pairwise mutually accessible. One can write this condition as

Ap = M

for all p ∈M .

An obvious way to begin relating the concept of accessibility to the set of admissible
points is to try to vary the control functions, which determine the path. This
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approach requires the use of an imbedding theorem on Banach spaces, which is
beyond the level of this thesis. While proofs are omitted, the general ideas remain
instructive. The discussion of the variation of functions is kept informal.

It is known from the theory of ordinary differential equations that the system
{

γ′ = u1(t)Xγ(t) + u2(t)Y γ(t), 0 ≤ t ≤ T

γ(0) = p,
(2.1)

has a unique solution. Also the system remains solvable, if the controls are changed
slightly, in a way that that preserves their smoothness. Denote u = (u1, u2) and
denote the open neighbourhood of u in which system 2.1 is solvable by the symbol
Up,T ⊂ C∞(Dom(u1, u2), R). Note that we can always assume T = 1, as the scaling
of u has the effect

γu(t) = γTu(t/T )

on the path γu.

Define a map Ep : Up,1−→M by setting Ep(u) = γu(1), where γu is the solution
to the system 2.1. This map is called the end-point map. By showing that the
map Ep is of constant rank, one is led to the following result known as the Orbit
theorem.

Proposition 2.1. The accessible set Ap of a associated to a distribution is an
immersed submanifold for any p ∈M . [2].

This yields Chow’s accessibility theorem as an easy corollary. The distribution
H is said to be bracket generating, if the fields X, Y and [X, Y ] span the tangent
space at every point. A bracket generating distribution is maximally nonintegrable
in the sense that the vector [X, Y ] is not in H at any point.

Corollary 2.1. Let M be a connected manifold with a horizontal subbundle H.
Assume that the distribution H is bracket generating. Then all points of M are
pairwise accessible.

Proof. Choose a point p ∈M and a local frame X, Y, Z adapted to the horizontal
structure in the neighbourhood of p. As Ap is an immersed submanifold, the
bracket [X, Y ]q is in the tangent space TqAp for every point q ∈ Ap. So because H
is bracket generating, we must have TqAp = TqMq. Hence the subset Ap is open in
M . Because M is connected and accessibility components form a partition of M ,
we must have Ap = M .

Next, we will prove the same result by using properties of flows. Recall that the
flow φ of a vector field V is a smooth mapping M × D−→M , where D is an
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interval containing 0, that satisfies

dφ

dt
= V,

and
φ(p, 0) = p

for all p ∈M . It is easy to show that in local coordinates the flow φ has the form

φ = id + tV +O(t2). (2.2)

The commutator of two flows φ and θ of vector fields V and W is defined as

[φ(t), θ(t)] = φ(t)θ(t)φ(−t)θ(−t)

By substituting equation 2.2 we one readily finds that the first order approximation
of the map defined in equation 2.1 is the identity. By computing second derivatives
of the expression, one finds the Taylor expansion

[φ(t), θ(t)] = id + t2[V, W ] +O(t3)

for the commutator of flows in coordinates adapted to the frame V, W .

Proposition 2.2. Let M be a connected sub-Riemannian 3-manifold. Then all
points of M are pairwise accessible.

The following argument can be generalised to higher dimensional cases by induc-
tion.

Proof. Fix a point p ∈M . It suffices to show that the set Ap is open to show that
Ap = M , since M is connected.

Let X, Y be a frame adapted to H in some neighbourhood U of p. Identify U with
a neightbourhood of 0 such that p is identified with 0.

Denote the flows of X and Y by φ and θ, respectively. Denote the bracket of
X and Y by Z. By assumption these form a local trivialisation of TU . In the
coordinates adapted to this frame we have

φ(t) = id + tX +O(t2), θ(t) = id + tY +O(t2).

Set

φ̄(t) =

{

φ(
√

t) if t ≥ 0,

φ(−
√

t) if t < 0,
θ̄ =

{

θ(
√

t) if t ≥ 0,

θ(
√

t) if t < 0.
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The commutator of the flows defined above satisfies

[φ̄(t), θ̄(t)] = id + t[X, Y ] +O(t2).

The composition of the above with the flows φ and θ yields a map U × A−→M ,
where A is a subset of R3 containing the origin, defined by the formula

ϕ(t1, t2, t2) =φt ◦ θt2 ◦ [φ̄t3 , θ̄t3 ]

=id + t1X + t2Y + t3[X, Y ] +O(t2).

The differential of this map is clearly invertible in some neighbourhood of 0, so we
find an open neighbourhood V of R3 in which ϕ is a diffeomorphism. The image
ϕ(V ) is accessible from p, since the p moves along a concatenation of horizontal
curves. We have shown that TAp = TM , which proves that p is an interior point
of Ap.

When all points are mutually accessible, the horizontal structure is called a contact
structure.

The contact structures can conveniently be given as the kernel a 1-form. A cal-
ibrating form ω for a distribution H is a 1-form which satisfies Kerω = H . A
calibrating form ω is a contact form, the wedge product

ω ∧ dω

is everywhere non-zero. Accessibility has a simple characterisation in terms of
contact forms.

Proposition 2.3. Let η be a 1-form. Then the distribution defined as the kernel
of η is integrable if and only if the form η satisfies the equation

η ∧ dη = 0.

At the other extreme, if η is a contact form on M , then its kernel satisfies Chow’s
condition.

Proof. Suppose η defines the horizontal distribution H on a 3-manifold M and let
X, Y be horizontal vector fields. Integrability can be characterised by Frobenius’
theorem [7, Theorem 14.5] as the equality

0 = η(X) = η(Y ) = η([X, Y ]).

We can see from the identity

dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ])
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that H is integrable if and only if dη(X, Y ) = 0. We have the equality

η ∧ dη(X, Y, Z) = C (η(X)dη(Y, Z) + η(Y )dη(Z, X) + η(Z)dη(X, Y ))

for some positive constant C. If H is integrable, the above is identically zero. If,
on the other hand, the last term is not zero, we must have η([X, Y ]) 6= 0, which
means that X, Y, [X, Y ] spans the tangent bundle. One only needs to choose X
and Y so that they span the horizontal distribution.

Finally we state the smoothing theorem mentioned earlier.

Proposition 2.4. [4, 1.2.B] Let (M, H) be a contact 3-manifold and γ : p y q is
a piecewise smooth curve connecting p and q, which are points on M . There exists
a smooth curve connecting p and q.

2.2 The Carnot-Carathéodory metric

Assume the vector fields X and Y define a two-dimensional distribution on a
manifold M , and that the Lie bracket Z = [X, Y ] spans the missing direction.
The global frame X, Y, Z is held fixed for the rest of this section.

Let p and q be points on M and denote by γu the integral curve given by controls u1

and u2. Define the Carnot-Carathéodory (CC) length L(γu) of γu by the integral

L(γu) =

∫

(

u2
1 + u2

2

) 1

2 , (2.3)

over the parameter interval Domγ. The length structure determined by the func-
tion L satisfies a natural collection of axioms, including the following.

• Path length is additive with respect to concatenation of horizontal curves.

• Path length is increasing, continuous and smooth with respect to the param-
eter.

• Path length is invariant in smooth reparametrisations.

The CC distance dC(p, q) of points p, q ∈M is computed from the length structure
as the lower bound infu L(γu), where the path γu is controlled by u and connects
p and q.

We gave the construction in terms of the special frame X, Y, Z, but the CC metric
can equivalently be constructed by giving a positive definite quadratic form Q on
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the horizontal bundle, which assigns the value∞ to all nonhorizontal vectors. The
CC length of a horizontal path γ is defined by

L(γ) =

∫

√

Q(γ′).

The definition can be extended to all paths on M by setting Q(V ) = ∞ for
vectors with a vertical component. The quadratic form can be obtained from the
earlier definition by setting Q to be the unique quadratic form that makes X, Y
an orthonormal system and assigns the value ∞ to nonhorizontal vectors. The
distance function is again defined as the lower bound for the length of connecting
paths. In coordinates adapted to the frame X, Y, Z, natural guess for a matrix
representation, which approximates the quadratic form, would be





1 0 0
0 1 0
0 0 L



 ,

where L is taken to infinity. We will return to an approximation of this kind in
section 3.3, but the coordinate frame will be related to the Lie group structure.

Recall that a geodesic (arc or segment) between points p and q on a Riemannian
3-manifold is a nonconstant solution to the geodesic equation

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0, (2.4)

given in terms of local coordinates xi, the Christoffel symbols Γi
jk of the Rieman-

nian metric and the boundary conditions determined by points p and q. Equiv-
alently, geodesics are the critical points of the first variation on length by curves
connecting p and q, that is, they are locally length minimising. Geodesic complete-
ness is the property that all geodesics can be infinitely extended. On Riemannian
manifolds we have the following classical theorem.

Proposition 2.5 (Hopf-Rinow). [13] Let V be a Riemannian manifold. The fol-
lowing are equivalent.

• The manifold V is (metrically) complete.

• The manifold V is geodesically complete.

• Any two points on V can be connected by a length minimizing geodesic.
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On a sub-Riemannian manifold, the term geodesic will be used to mean a length
minimising curve connecting two points p and q parametrised by a nonzero multiple
of the CC arc length (usually unit speed). Geodesics between two points p and q
on sub-Riemannian manifolds can also be defined by a geodesic equation similar
to the Riemannian case, and as critical points of length for horizontal variations.
Details for this formulation of geodesity on general sub-Riemannian manifolds can
be found in the paper [14] and explicit calculations on the Heisenberg group are
done in the book [12].

A statement analoguous to Proposition 2.5 is true for sub-Riemannian manifolds.

Proposition 2.6. [14] Suppose M is a sub-Riemannian manifold.

• If M is complete, then every geodesic can be extended infinitely, and any two
points can be joined by a geodesic.

• If for some point p ∈ M , all geodesics starting from p can be infinitely
extended, then M is complete.

In later sections, we will study the topological properties mentioned above on the
Heisenberg group.

2.3 The Heisenberg Lie algebra

This section introduces the first Heisenberg group, which is the simplest nontrivial
example of a sub-Riemannian manifold. We will define a contact structure based
on the noncommutativity of the group structure. This contact structure is often
called the standard contact structure of R3.

Start from a three dimensional vector space with a basis V1, V2, V3 and define the
bracket relations

[V1, V2] = −4V3, [V1, V3] = [V2, V3] = 0.

We will denote this Lie algebra by h. Note that h is step two-nilpotent, which
means that every expression containing a nested bracket evaluates to zero.

The correspondence theorem between Lie algebras and simply connected Lie groups
[7, Theorem 15.35] implies that there is a unique group structure in R3, whose Lie
algebra is h. We will call this group the first Heisenberg group. The contact
structure on the first Heisenberg group can now be described in terms of its Lie
algebra. The vectors V1 and V2, interpreted as vectors in T0H, span the plane
H0H. Left-translation allows us to define a two-dimensional distribution H on H.
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The commutator of V1 and V2 spans the missing direction at the origin, so by left
invariance the distribution is bracket generating. The sub-Riemannian distance
function dC on the Heisenberg group can now defined by the construction given
in the previous section, using the invariant vector fields V1 and V2 as the control
fields. The term Heisenberg group and the symbol H will, from now on, refer
to the sub-Riemannian manifold (H, H) with the intrinsic distance function dC.
This distance function was defined in terms of the invariant vector fields, so left
translation will define a dC isometry. Hence the isometry group will be transitive.

Coordinates will be given in section 2.4. The sub-Riemannian Heisenberg group
models the geometry of the plane at each point. We will study this connection to
planar geometry in the following sections. The Lie algebra of the euclidean plane
can be seen as the image of the projection onto V1⊕ V2. The metric structure will
reveal connections to both real euclidean and complex hyperbolic spaces.

2.4 Exponential coordinates on the Heisenberg group

To define coordinates on H, we will identify points in the Heisenberg group with
points in its Lie algebra. This is possible because of the following proposition.

Proposition 2.7. [5] Let G be a simply connected analytic Lie group whose Lie
algebra is nilpotent. Then the exponential map is a diffeomorphism.

The exponential map h−→H defined on the Heisenberg Lie algebra will be denoted
by X 7→ eX and the left action of eX on a point p by eXp.

A point W ∈ h is of the form W = (xV1 + yV2 + vV3), which we will identify with
a point (x, y, v) ∈ R3. We continue to identify the point (x, y, v) ∈ R3 with its
image under the exponential map, so we get the identification given by

(x, y, z)←→ exV1+yV2+vV3 .

These coordinates will be referred to as exponential coordinates on the Heisenberg
group. We will frequently use complex notation and write (z, v) = (x + iy, v) ∈
C× R for (x, y, v).

To derive the group law for H in exponential coordinates, we begin by writing the
Baker-Campbell-Hausdorff formula [5] in the step two-nilpotent case

pq = log
(

eW eW ′

)

= W + W ′ +
1

2
[W, W ′].

Substituting W and W ′ in the V1, V2, V3-basis, the above expression takes the form

(x + x′)V1 + (y + y′)V2 + (v + v′)V3 +
1

2
(xV1 + yV2 + vV3, x

′V1 + y′V2 + v′V3).
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The commutator relation given by equation 2.3 of h yields the group law for points
W = (z, t), W ′ = (w, s) ∈ H

(z, t)(w, s) = (z + w, t + s + 2 Im zw̄). (2.5)

In terms of real coordinates, the group law for elements (x, y, v) and (x′, y′, v′) can
be expressed as

(x, y, v)(x′, y′, v′) = (x + x′, y + y′, t + s + 2(x′y − xy′)..

Let p ∈ H be a point with coordinates (x, y, v). The derivative map of the left
translation Lp(q) = pq can now be deduced from equation 2.4.

(Lp)∗ =





1 0 0
0 1 0
2y −2x 1





Now consider the coordinate vector fields ∂
∂x

, ∂
∂y

and ∂
∂v

. Translation invariant
vector fields can be obtained from these by applying the linear map (Lp)∗ to
produce a global frame given by

X =
∂

∂x
+ 2y

∂

∂v
, Y =

∂

∂y
− 2x

∂

∂v
and ν =

∂

∂v
. (2.6)

The two dimensional distribution X, Y spans the horisontal distribution HH or H
for short. This distribution is given by the 1-form

ω = dv + 2 (xdy − ydx) = dv + 2 Im zdz̄.

A direct computation shows that ω is a contact form:

ω ∧ dω =(dv + 2 (xdy − ydx))) ∧ (2dx ∧ dy − 2dy ∧ dx)

=− 4dv ∧ dy ∧ dx = 4dx ∧ dy ∧ dv,

so ω ∧ dω is nondegenerate.

The vector fields X and Y are identified with the vectors V1 and V2 in the Lie
algebra. Hence the sub-Riemannian length structure is now determined by these
two vector fields.

A horizontal path γ on H given by controls a, b ∈ C∞(I, R2) can be used to define
a path on the plane satisfying (x′, y′) = (a, b) called the projection of γ. This path
has the important property, that the euclidean length of the projected path is the
same as the CC length of the original path. Conversely, a path α = (a, b) can
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be lifted uniquely to a path α̂ the Heisenberg group, as the third component is
determined by the horizontality condition α̂′ ∈ Ker(ω) on the tangent of α̂. The
expression for the unique lift is

α̂ =

(

a(t), b(t),−2

∫

I

(ab′ − ba′)(t)dt

)

.

A rather remarkable property of the exponential coordinates is that we can eas-
ily derive simple parametrisation for geodesic arcs. Recall the following classical
theorem.

Proposition 2.8. [8] Suppose ΦA(p) is the family of closed plane curves, with a
common point p that enclose the area A. The circle of radius A/π is a critical
point of length, and the unique length minimising curve.

Corollary 2.2. Suppose ΦA(p, q) is the family of injective plane curves obtained by
concatenating a smooth curve with a segment [q, p] such that their enclosed areas
are equal to A. The circular arc is the unique critical point of length, and the
unique curve of minimum length. When A = 0 the only critical point is a straight
line.

Proposition 2.9. CC geodesics in H are lifts of constant curvature plane curves.

Left translation preserves the geodesity of curves, so we may assume the initial
point of a geodesic arc to be the origin.

Proof. Let γ = (γ1, γ2, γ3) : [0, p]−→H be a geodesic arc in H connecting points
0 and p = (x, y, t). Consider the concatenation of the curve (γ1, γ2) with the
straight line segment connecting its end points. Call this piecewise smooth curve
α. Suppose first that α has no self-intersections. We write t in terms of derivatives
and use the horizontality of γ

t =

∫ 1

0

γ′
3(t)dt

=− 2

∫ 1

0

(γ1γ
′
2 − γ2γ

′
1)dt

The integrand above xdy−ydx will equal to zero along any straight line segments.
Therefore the integral is unchanged in the concatenation and we have

t = −2

∫

α

xdy − ydx.

12



The path α is a piecewise smooth curve bounding a surface S in the plane, so we
can use Stokes’ theorem to find

t =− 4

∫

α

dx ∧ dy (2.7)

=− 4Area(S), (2.8)

Proposition 2.8 requires the projection to be a curve of constant curvature, which
satisfies the area and end point requirements. We also see that if (γ1, γ2) is a
straight line segment, it is a geodesic, by Corollary 2.2.

Now suppose the geodesic γ is arbitrary and the curve α is allowed self-intersections.
Choose s ∈ [0, 1] and suppose the curvature of of projection β = (γ1, γ2) is positive
at this point. Curvature is a continuous function by the smoothness of γ, so we can
choose a neighbourhood [a, b] where the curvature does not change its sign. The
restriction of β to the subinterval [a, b] is geodesic and by the above argument, of
constant curvature. Suppose, on the other hand that the curvature is zero at some
point. The curvature of β is continuous by the smoothness of γ, so if the curvature
is zero at any time s ∈ I, then it must be zero in some neighbourhood of s. Hence
the curvature of β is locally constant, which by continuity of β implies that it is
indeed constant. Hence γ is the lift of a constant curvature path in R2.

The solution to the isoperimetric problem in the plane also gives us the following.

Corollary 2.3. Length realising curves between points (z, v) and (0, 0) in H are
lifts of unique circular arcs if z 6= 0, and otherwise they are lifted from the family
of circles of fixed radius containing the origin.

Proof. The projection of a length realising curve must either be in the family
defined in Proposition 2.8 or after concatenation by a segment in the family defined
in Corollary 2.2. This implies the result.

The family of lifts starting from the origin can be parametrised in terms of the
radius R of the projection, the angle parameter t corresponding to the vector
cos(t) ∂

∂x
+ sin(t) ∂

∂y
and the length parameter s ∈ R+ as

(t, R, L)←→
(

R(ei(s−π/2) ± ieit),±2R2 (sin(s)− s)
)

s∈[0,L/R]

and
(t, R, L)←→

(

seit, 0
)

s∈[0,L]
.

The uniform limit of this family when R tends to infinity is the straight line
with the initial tangent vector cos(t) ∂

∂y
− sin(t) ∂

∂x
. It is often more convenient to

13
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Figure 1: Two curves (0, 0) y (1, 0) that lift to geodesics of distinct length on
H.

express the family given by 2.4 in terms of the curvature c = R−1 and the unit
speed parametrisation obtained by replacing s with cs.

(t, c, L)←→
(

1

c
(
(

eci(s−π/2) ± ieit
)

,± 2

c2
(sin(cs)− cs)

)

s∈[0,L]

.

This is the parametrisation of geodesic arcs we will use in the following.

Example 2.1. Consider geodesics connecting the origin to the point (1, 0,−6π).
One such example is the lift of the circle of radius 0.5 with the center (1

2
, 0) trans-

versed one and a half times in the positive direction. We know that there is a
shorter path, which can be lifted from the circular arc of radius R and comple-
ment angle 2α. From elementary geometry, we have the pair of equations

2R sin β = 1,

πR2(1− β

2π
) + R cos β = 3/2π,

whose solution is R = 0.6357, β = 0.9052. The center is at the point (0.5, 0.3926).
Denote the two geodesics aquired by lifting the larger and the smaller circular
arc by γ1 and γ2. The existence of a third geodesic would require the projected
circle to be traversed more than twice. Hence these are the only geodesics, as γ2 is
obtained by lifting the smallest circle containing the points (0, 0) and (1, 0). The
CC lengths of the two geodesics are related by

L(γ2) = 1.6573L(γ1).
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and the ratio of their curvatures is 1.2714.

Let q be the point (z, s) ∈ H and call the quantities |z| and |s|, respectively,
the horizontal and vertical distance between 0 and q. For general pairs of points
p, q ∈ H, define the vertical (horizontal) distance between them to be the vertical
(horizontal) distance between p−1q and 0. We will give names to the two extremal
relative positions of points in H. If the vertical (horizontal) distance from p to
q is zero, the points are said to be in horizontal (vertical) relative position. In
euclidean space, one often makes the identification between a tangent plane and
an affine subspace. We can do similar identifications on the Heisenberg group. For
instance, the horizontal plane at point p spans an affine subspace of H of points,
which are accessible by zero-curvature geodesics.

The added third dimension perpendicular to the horizontal plane has peculiar
properties, which now become quite tangible, as the simple parametrisations turn
the study of geodesics into simple analytic geometry. We are ready to prove the
following proposition.

Proposition 2.10. Suppose t is nonzero. If the ratio |t|/|z|2 is finite, there are a
finite number of geodesics connecting 0 and (z, t).

Proof. The minimum radius of a connecting geodesic is given by |z|/2, as seen
from the above parametrisations. Hence, by equation 2.7, we have the inequality

k ≤ v

π|z|2

on the number of geodesics k.

Example 2.2. As an example of the vertical extremal case, we provide an infinite
family of geodesics of distinct length connecting the points (0, 0) and (0, 1) in H

in complex form. Let γk denote the lift of the path

1

2
√

kπ
(e−iφ − 1).

To see that γk connects points (0, 0) and (0, 1), notice that the enclosed area of
each curve is 1. The CC length of curve γk is

√

π/k.

It is clear that geodesics of the form 2.4 and 2.4 can be infinitely extended, so
we have metric completeness by Proposition 2.6. Another way to see that H is
metrically complete is introduced in the next section. Section 3.3 will provide yet
another technique for proving completeness, as well as other topological properties,
by Riemannian approximation.
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2.5 The Heisenberg metric

This section introduces an easily computed metric on the Heisenberg group that
is bilipschitz-equivalent to the sub-Riemannian metric defined earlier. Define the
Korányi gauge |p|H for p ∈ H by

|(z, t)|H =
(

|z|4 + t2
)

1

4 .

Now we can define the distance between (z, t) and (w, s) by

dH ((z, t), (w, s)) = |(z, t)−1(w, s)|H = |(w − z, s− t− 2 Im zw̄)|H.

Proposition 2.11. The function dH : H−→R is a metric.

Proof. Clearly dH is zero if and only if (z, t) and (w, s) are equal. It is symmetric,
since |(z, t)−1|H = | − z|4 + (−t)2 = |(z, t)|H. The inequality

dH(p, q) ≤ |p|H + |q|H

was proven in [1, sec F]. Hence for any triplet p, q, r ∈ H, we have

dH(p, r) + dH(q, r) =|p−1r|H + |q−1r|H
≥|(p−1r)−1q−1r|H
=|(r−1p)(q−1r)|H
=|(q−1r)(r−1p|H
=dH(p, q),

which proves the triangle inequality. Other metric axioms are clear from the
definition.

The metric dH will be called the Heisenberg metric, while we use the term Heisen-
berg CC metric for the distance function dC .

Path length of continuous paths can be computed without reference to derivatives
if the distance function is given.

Definition 2.1. The path length of a continuous path γ with regard to a given
metric d is given by

L(γ) = lim sup
N→∞

N
∑

i=0

d(γ(ti+1), γ(ti)),

where the supremum is taken over all finite subsets Dom(γ) such that ti < ti+1.
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By this definition, the metric dH induces the same length structure as the metric
dC .

Proposition 2.12. [8] Let γ : [0, 1]−→H be a path. The length structures induced
by dC satisfies

LdH
(γ) =

{

LC(γ) if γ is horizontal,

∞ otherwise.

The Heisenberg metric is an example of a non intrinsic metric. The induced length
metric given by the length structure LdH

is not the same metric as the metric dH

itself. In other words, it dH is not the same function as its induced length metric
dC . The metric space (R3, dH) is clearly complete and locally compact, so the
infimum can be taken to be a minimum that is achieved by some path γ. Pairs
of points in (H, dH) that are not in horizontal position relative to each other have
no distance realising geodesics connecting them. In other words, no curve that
satisfies the equation dC(p, q) = LdH

(γ) exists. Still, the metrics are equivalent
and we have the inequality

1√
π

dC(x, 0) ≤ dH(x, 0) ≤ dC(x, 0).

The inequalities are tight. To see the tightness of the lower bound, consider the
points p = (0, 0) and q = (0, 1) in H. The length realising curve is the lift of a
circle of radius 1

2
√

π
, hence the CC distance is equal to

√
π. So the ratio of metrics

satisfies
dH(p, q)

dC(p, q)
=

1√
π

.

For the upper bound, consider points in relative horizontal position, where both
metrics restrict to the euclidean metric.

The upper bound follows from Proposition 2.12, since the induced length metric
always majorises the original metric. The left inequality is easy to justify heuristi-
cally by computing the ratio of distances for pairs of points with different vertical
distance to squared horizontal distance ratios. However, a proof for the tight lower
bound could not be found. The CC metric functions involves transcendental func-
tions, and it seems tricky to try to find the right inequalities, which would lead to
a tight bound. We will sketch a proof without the tight bound in section 3.5. The
maximum is reached when the two points are in vertical relative position.

The metric completeness of (H, dH) is clear, so (H, dC) is complete by the equiva-
lence of metrics.
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3 Complex Hyperbolic Space and the Heisenberg

Group

3.1 The ball model

In this section we will introduce the complex hyperbolic space and outline some
of its basic properties. The complex hyperbolic space will serve as an ambient
space for the Heisenberg group. Recall that the construction of the real hyperbolic
3-space leads to the unique homogeneous, isotropic manifold of constant sectional
curvature of the specified dimension. The construction of the complex hyperbolic
space is the same, but the metric structure of the complex hyperbolic space is
more involved. The Möbius maps of the plane are obtained from the action of the
real hyperbolic group (the isometry group of the real hyperbolic plane). A similar
connection can be found between the Heisenberg group and a subgroup of the
complex hyperbolic group. An outline of the basic properties of real hyperbolic
space can be found in [15]. Unlike in the case of the construction of real hyper-
bolic space, the sectional curvature is non-constant. With our choice of scale, the
sectional curvature of CH

2 ranges between −1 and −1
4

[3].

We start by defining the space of complex lines P(C3) consisting of points [v] ∈
P(C3) that are one-dimensional subspaces spanned by nonzero vectors z ∈ C3.
This space is called the complex projective space. The space P(C3) is a complex
manifold with smooth structure given by the holomorphic quotient map P : z 7→ [z],
with [z] denoting the complex line represented by a vector z 6= 0. The map P is
often called the projectivisation. We will use the shorthand P2 for P(C3).

Let 〈·, ·〉 denote the quadratic form defined by the matrix

J =





1 0 0
0 1 0
0 0 −1



 ,

so for vectors z, w in C3, it has the expression

〈z, w〉 = z̄Jw = z1w̄1 + z2w̄2 − z3w̄3.

We will call vectors z ∈ C3 negative, if 〈z, z〉 < 0 and define null and positive
vectors similarly by conditions 〈z, z〉 = 0 and 〈z, z〉 > 0, respectively. The space C3

endowed with this bilinear form is often denoted by C2,1. Negativity is preserved
under dilations z 7→ λz, so it is well defined for elements of P2. The complex
hyperbolic space CH

2 ⊂ P2 is the set of negative lines endowed with the distance
function

cosh2

(

d([z], [w])

2

)

=
〈z, w〉〈w, z〉
〈z, z〉〈w, w〉 .
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Note that we have the inequality

〈z, w〉〈w, z〉 ≥ 〈z, z〉〈w, w〉

for all negative vectors z and w, with equality if and only if z and w are linearly
dependent. Hence the function d defined in 3.1 is well defined. The proof that this
defines a metric can be found from [9].

Now define homogeneous coordinates on P2 by setting the last coordinate equal to
1 by and projecting onto the first two coordinates. This coordinate patch leaves
out a subspace isomorphic to P1, but yields a global chart for CH

2. Negative
vectors correspond to points (z1, z2) in the unit ball

B
2 =

{

(z1, z2) ∈ C
2 :
√

|z1|2 + |z2|2 < 1
}

.

Denote by B2 the open unit ball in C2. We can express the metric above in the
ball model by letting the third coordinate equal to 1 as

cosh2

(

dB2(x, y)

2

)

=
(1− (x, y))(1− (y, x))

(1− |x|2)(1− |y|2) ,

in terms of the usual euclidean inner product

(x, y) = x1ȳ1 + . . . + xnȳn.

The unit ball equipped with this distance function is called the ball model for
complex hyperbolic space.

Up until this point everything has been the same as in the euclidean case. However
the properties of the infinitesimal forms of the complex hyperbolic and real hyper-
bolic metrics are different. Kähler potentials yield a way to defining Riemannian
metric tensors on domains of Cn, which are isometric to the complex hyperbolic
space. This resulting Riemannian metric is often called the Bergman metric. The
detailed construction can be found in [3]. The Bergman metric on the unit ball B2

is given by

g =
2(z1z̄2dz̄1dz2 + z̄1z2dz1dz̄2 + dz1dz̄1 + dz̄1dz2)

(1− ‖z‖)2
.

We will simply refer to this metric tensor as the hyperbolic metric. The connection
between the Riemannian metric g and the distance function dB2 is given by the
next proposition.

Proposition 3.1. [3, Ch. 3] The hyperbolic metric tensor g induces the distance
function dB2, ie the metric dB2 is intrinsic.
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It is apparent that any linear maps preserving the quadratic form are isometries.
Maps of this type form a subgroup U(2, 1) of GL(3) called the unitary group. It is
standard to force the action of the unitary group on the projective space to have a
trivial kernel by factoring out the center Z of U(2, 1) consisting of scalar matrices
λI3, which produces the projective unitary group PU(2, 1). Elements g ∈ PU(2, 1)
are divided into three types in the literature. If g fixes exactly one point in ∂CH

2,
it is called parabolic. These are the type of transformations that are intimately
connected with Heisenberg geometry, and we shall explore this connection in the
next section. The group PU(2, 1), the complex hyperbolic group contains the map
induced by complex conjugation in each component.

A geodesic subset N ⊂ M of a length metric space has the property that shortest
paths between two points in N are contained in N . This is an analogue of convex
sets in euclidean space, where straight line segments are contained in the convex
subset. A complex geodesic is the projective image of a two-dimensional subspace
of C2,1. A projective line can be defined by a nonzero vector x and a tangent vector
u ∈ x⊥, and two complex projective lines always have a unique intersection. In
hyperbolic space CH

2, complex geodesics are geodesic submanifolds [3]. It follows
that geodesics in CH

2 are unique.

We will state one more result from [3], which shows that CH
2 does have large

isometry group.

Proposition 3.2. [3] The group PU(2, 1) of isometries of CH
2 is transitive, ie

CH
2 is homogenous. Moreover the stabilizer of a point x ∈ CH

2 in PU(2, 1) is
transitive on the set of tangent vectors at x, ie CH

2 is isotropic.

Similarly, as in the case of the real hyperbolic manifold, the R-affine lines (of the
form tz + w, for a real parameter t) in C3 map to geodesics under the projec-
tivisation map. In particular, geodesics starting from the origin are straight line
segments. One way to see this is to notice that the restriction of the hyperbolic
metric to a complex geodesic V is simply the real hyperbolic metric on the plane.
Hence the geodesics are R-affine lines in the subspace P−1V , and in the whole
space C3.

3.2 The Siegel domain and the embedded Heisenberg group

We can construct the natural extensions of affine maps on the horizontal plane
to the whole Heisenberg group by considering a certain stabiliser subgroup of
the complex hyperbolic group. The Heisenberg group appears as an embedded
subgroup of the complex hyperbolic group. This section is devoted to finding an
explicit expression for this subgroup as a matrix subgroup of the projective unitary
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group PU(2, 1). As a bonus, we obtain the group of similarity transformations on
the Heisenberg group consisting of transformations, which correspond to euclidean
translations, rotations and dilations.

Define the map W : C2−→P2 by

(z1, z2) 7→





z1
1
2
− z2

1
2

+ z2



 .

This map is a well defined linear injective embedding, by which the hyperbolic
part CH

2 corresponds to an unbounded subset H = W−1CH
2 of C2.

There is exactly one point in the complement of the image of W . We denote this
point by p∞, which is represented in C2,1 by the vector

p̃∞ =





0
−1
1



 .

The subset H is called the Siegel domain. Consider the restriction C : B2−→H of
W−1. In homogenous coordinates C(z1, z2) = (w1, w2) is given by [3]

z ∈ B2 ←→ w ∈ H

z1 =
2w1

1 + 2w2

w1 =
z1

1 + z2

z2 =
1− 2w2

1 + 2w2

w2 =
1

2

1− z2

1 + z2

.

The coordinate transformations C : B−→H is will be called the Cayley tranforma-
tion. The boundary extension defines a unique diffeomorphism C : S3\{(0,−1)}−→ ∂H.
We will call this map by the same name and denote it by the same symbol. The
domain will be made evident from the context. This map will be used in finding
algebraic expressions for transformations induced by self-maps of the boundary of
the hyperbolic space.

Recall that a defining function of a domain D in C2 is a smooth function f : C2−→R

such that the domain corresponds to the subset where f > 0. Similarly, a function
can be used to define a hypersurface of C2 by the condition f = c for c ∈ R. A
defining function for the Siegel domain is given by

f(w1, w2) = 2 Re w2 − w1w̄1. (3.1)

Horospheres are submanifolds of CH
2, which are stable under isometries of the

the complex hyperbolic space that fix a point on the boundary. In a certain
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sense, they are equidistant from the unique fixed point on the boundary. Level
sets f−1(φ) for positive values of φ of the defining function f are precisely the
horospheres corresponding to the fixed point P(p∞). This simple expression for
horospheres is the reason for choosing to work in the Siegel domain model for the
complex hyperbolic space, when studying the parabolic subgroup of the complex
hyperbolic group.

Next we will explicitly describe a subgroup of the isometry group of CH
2. Denote

the Lie algebra of U(2, 1) by u(2, 1). Let δM denote a matrix of infinitesimal
elements. Now the condition that a matrix in the neighbourhood of the identity is
in U(2, 1) can be written (I + δM)∗J(I + δM) = J , where J is the matrix of the
(2, 1)-indefinite quadratic form. By multiplying and only considering first order
terms, we get the condition

JM∗ + MJ = 0,

which is equivalent to M having the form




ir a b
−ā is c
b̄ c̄ it



 ,

where r, s and t are real and a, b and c complex numbers. Now consider the
subgroup F of U(2, 1), which fixes the element p∞ ∈ P2. The Lie algebra f of the
group F is the set

f = {M ∈ u(2, 1) : Mp∞ = λp∞ for some λ ∈ C}.

By substituting we get the relations

b− a = 0

c− is = −λ

it− c̄ = λ.

From these it is easy to see that an element in f is of the form




ir a a
−ā is u + is
ā u− is −is



 ,

where r, s and u are reals and a is a complex number. A basis for f can be given
by choosing

V1 =





0 1 1
−1 0 0
1 0 0



 , V2 =





0 i i
i 0 0
−i 0 0



 , V3 =





0 0 0
0 i/2 i/2
0 −i/2 −i/2



 ,
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V4 =





0 0 0
0 0 1
0 1 0



 , V5 =





i 0 0
0 0 0
0 0 0



 ,

Define the subalgebras f1 = span
R
{V1, V2}, f2 = span

R
{V3}, η = span

R
{V4} and

m = span
R
{V5}. In the following, we will see how V1, V2 and V3 span the Heisenberg

Lie algebra, whose elements p = (z, v) ∈ H shall be identified with 3 by 3 matrices
of the form





0 z z
−z̄ iv/2 iv/2
z̄ −iv/2 −iv/2



 .

Because of step two nilpotency of the algebra f1 ⊕ f2, the exponential map is easy
to compute. We obtain the following representation of the Heisenberg group as a
group of complex 3-by-3 matrices acting on CH

2

H(z, v) =





1 z z
−z̄ 1− 1

2
(|z|2 − iv/2) −1

2
(|z|2 − iv/2)

z̄ 1
2
(|z|2 − iv/2) 1 + 1

2
(|z|2 − iv/2)



 .

We will denote this subgroup of the complex hyperbolic group by N. Define the
evaluation map on each the complex hyperbolic space of N on the point





0
s
1





by setting

H(z, t) 7→ H(z, t)





0
s
1



 =





(1 + s)z
1
2
(2s + (1 + s)vi− (1 + s)|z|2
1
2
(2− (1 + s)vi + (1 + s)|z|2



 . (3.2)

The evaluation map can be composed with the Cayley transform to define a map
on the Siegel domain. The crucial fact is that the evaluation map is a bijection on
each horosphere. Thus the Heisenberg group can be identified with any horosphere
by the identification

(z, t)←→ H(z, t)





0
s
1



 .

We can set s = 1 to formally obtain coordinates on the complement of a point
on the boundary of the hyperbolic space. The subalgebras m and η will generate
a group, which acts on the horospheres, and by identification, on the Heisenberg
group.
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The exponential function on m generates the matrix group




eui 0 0
0 1 0
0 0 1



 ,

isomorphic to U(1), parametrised by u ∈ R. Denote elements of this form by
Au. of By writing out the series for matrix elements in eV4 , one can see that the
1-parameter subgroup generated by V4 consists of matrices of type





1 0 0
0 cosh(λ) sinh(λ)
0 sinh(λ) cosh(λ)



 ,

for any real number t. The subgroup generated by

(Au)u∈R = em

and
(mλ)λ∈R = eη

is commutative. Furthermore, the subgroup N is normal in G = Stab(p∞). This
can be seen by a direct computation




e−ui 0 0
0 cosh(λ) − sinh(λ)
0 − sinh(λ) cosh(λ)









0 z z
−z̄ 1− q −q
z̄ q 1 + q









eui 0 0
0 cosh(λ) sinh(λ)
0 sinh(λ) cosh(λ)





=





1 eλ−iuz eλ−iuz
−eλ+iuz̄ 1− 1

2
(|eλz|2 − ie2λv) −1

2
(|eλz|2 − ie2λv)

eλ+iuz̄ 1
2
(|eλz|2 − ie2λv) 1 + 1

2
(|eλz|2 − ie2λv)



 = H(eλz, e2λv),

where we use the notation q = 1
2
(|z|2 − iv/2). Hence we can express the whole

group G as an semidirect product N ⋊ U(1) × η and every element of the group
can be written uniquely as a product H(ζ, v)Aumλ.

The group G acts on the Siegel domain by the identification CH
2 ↔ H given by

the Cayley transformation. Moreover, the action of G preserves horospheres, so it
defines an action on each set f−1φ for φ > 0. As we have identified horospheres with
the Heisenberg group, we recover a group of transformations on the Heisenberg
group. We will call this group the Heisenberg similarity group Sim(H). Elements
of N will be called Heisenberg translations, and elements obtained by conjugating
an element mλ or Au by a Heisenberg translation will be called Heisenberg dilations
and Heisenberg rotations. By using the evaluation map given in 3.2, we can derive
coordinate expressions in the Siegel domain for all of these maps.
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The connection between the exponential coordinates on the Heisenberg group and
the group N is now made clear by defining horospherical coordinates (also called
Heisenberg coordinates) on the Siegel domain by

(ζ, u + iv) ∈ C× R+ × R,

where z = w1 ∈ C and u + iv = 2w̄2 − ‖w1‖2, so that u equals the horospherical
height function φ(w1, w2). This change of coordinates is a biholomorphism when
restricted to the Siegel domain H. The image of a point (z, u, v) under the action
of H(ζ, v) is

(z + ζ, u, v + 2 Im(ζ, z) + v).

Hence under the identification H(ζ, v) ↔ (ζ, v) the action of N simply becomes
left translation. In particular, Heisenberg translations are isometries of H.

Elements of G act on the boundary of the complex hyperbolic space by unique
extension by continuity. The action of G is formally the same in Heisenberg coor-
dinates for any value of the horospherical height coordinate u and this holds for
the boundary extension (u = 0) as well.

The following diagram conveniently captures the identifications that are made
throughout.

H
Action of N on(0,0)←→ ∂H

Cayley map←→ S3\{(0,−1)}
↓ ↓ ↓
H

Action of N on(0,0)←→ ∂H
Cayley map←→ S3\{(0,−1)}

(3.3)

Given the above horizontal identifications, an induced map is the unique choice
of vertical map, which makes the above diagram commute. This map is given by
conjugation by the correct horizontal maps. We will find the coordinate expression
for all elements of G in section 3.5.

3.3 Left-invariant Riemannian metrics on the Heisenberg

group

A natural way to approximate the CC geometry of H is by considering a family
of left invariant Riemannian metrics orthogonal with regard to the basis vectors
X, Y and ν such that the vertical direction is given a large weight L. As the
parameter L tends to infinity the metrix structure H gradually tends to the CC
metric structure in a strong Gromov-Hausdorff sense. Limiting arguments can
then be used to prove theorems about the topological and metric structure of the
sub-Riemannian Heisenberg group. We will approach the approximation of the
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CC metric by embedding the Heisenberg group into the larger complex hyperbolic
space and by considering restrictions of the hyperbolic metric.

The Bergman metric on the Siegel domain is given by the expression [3]

4

f(w1, w2)2
(dw2dw̄2 − (w2 + w̄2) dw1dw̄1 + ‖w1‖dw1dw̄1 + f(w1, w2)dw1dw̄1) .

Substituting the expressions for horospherical coordinates, and restricting to the
horosphere f−1φ, we get the expression

4

φ2

{

(d|ζ |2 − idv)(d|ζ |2 + idv)

4
+ |ζ |2|dζ |2 − ζdζ̄(d|ζ |2 − idv) + ζ̄dζ(d|ζ |2 + idv)

2

}

+
4

φ
|dζ |2

Here we write |ζ |2 for ζζ̄. The outer derivative of this evaluates to ζ̄dζ + ζdζ̄.
We also write |dw|2 for dwdw̄. Restriction to a horosphere means that we are
evaluating vectors orthogonal to ∂

∂u
, which are in the kernel of du, so summands

containing du as a symmetric factor can be omitted.

When restricted to horospheres, the above expression simplifies down to

1

φ

{

1

φ

(

2|ζ |2d|ζ |2 − ζ2dζ̄2 − ζ̄2dζ2 + dv2 − 2idv
(

ζdζ̄ − ζ̄dζ
))

+ 4|dζ |2
}

,

which can be written

1

φ

{

1

φ

(

dv − 2 Im ζdζ̄
)2

+ 4|dζ |2
}

=
1

φ

{

1

φ
(dv + 2(xdy − ydx))2 + 4(dx2 + dy2)

}

.

We see that the Heisenberg contact form ω = dv − 2 Im ζdζ̄ = dv + 2xdy − 2ydx
appears in the expression, and so we write the above in the final form

gφ =
1

φ

{

ω2

φ
+ 4(dx2 + dy2)

}

.

The matrix form of the above at the origin x = y = v = 0 is

1

φ





1 0 0
0 1 0
0 0 1/φ



 .

We see that the system
√

φ ∂
∂x

,
√

φ ∂
∂y

, φ ∂
∂v

is orthonormal at the origin. As in 2.6,
the unique translation invariant frame is given by

U1 =
√

φ(
∂

∂x
+ 2y

∂

∂v
), U2 =

√

φ(
∂

∂y
− 2x

∂

∂v
), U3 = φ

∂

∂v
.

26



This system is orthonormal at each point, as Heisenberg translations are isometries
of the Bergman metric and also of its restriction gφ. Let γ be a C1 curve given by
control functions a1, a2 and a3. In other words γ satisfies the equation

γ′ = a1U1 + a2U2 + a3U3.

Upon rescaling by a factor φ, the length of γ is given by

Lgφ
(γ) =

∫

√

gφ(γ′, γ′)

=

∫

√

a2
1 + a2

2 + φa2
3.

This Riemannian length structure gives rise to a distance function dφ.

The quadratic form in the integral converges to the quadratic form related to
the CC metric defined in section 2.1. The metric spaces (H, dφ) converge in the
Gromov-Hausdorff sense to the space (H, dC). This implies, for instance, that
length minimising horizontal curves in (H, dC) are aquired as uniform limits of
geodesic arcs in (H, dφ). Also the quantity

lim sup
φ→0

dC(x, y)− dφ(x, y)

in any compact subset is zero as φ tends to zero. The details and proofs of results
related to Gromov-Hausdorff convergence are found in [8].

We can use the Riemannian approximation to derive consequences of propositions
2.5 and 2.6. We will only use completeness of the Riemannian approximants, and
not the explicit forms of the geodesics or the distance function.

First of all, a distance realising path on γdC
can be constructed by finding a

family of length minimising geodesics on the Riemannian manifolds (H, gφ). Their
existence follows from the metric completeness of the manifolds (H, gφ) and the
Hopf-Rinow theorem (Proposition 2.5). Hence, length minimising curves always
exist between all pairs of points on the sub-Riemannian manifold (H, dC).

Next we wish to construct an infinite extension for a geodesic starting from p ∈ H.
Let γ be a geodesic between two points p and q on HdC

. Consider the sequence γφ

of paths converging uniformly to the path γ, such that the paths γφ : p y q are
geodesics on Riemannin manifolds (H, gφ). Every one of these geodesics is uniquely
infinitely extendable by Proposition 2.5. In any compact set, these extensions
converge uniformly to an extension of the path γ. Hence we have constructed an
extension of arbitrary finite length. Consider another extension γ̄ of the path γ.
The path γ̄ is aquired as a limit of a sequence of curves γ̄φ on Riemannin manifolds
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(H, gφ), whose restrictions will converge to the path γ. The result follows from
unique extendability of paths γ̄φ.

Besides these topological properties, which are at this point rather trivial, the
Riemannian approximation has other immediate corollaries.

Proposition 3.3. The Heisenberg group can not be isometrically embedded in
euclidean space Rn for any n.

Proof. The scalar curvature of the Riemannian approximants diverges everywhere
as φ tends to zero [8], so the distance function dC can not be given by a Riemannian
metric.

3.4 CR structures

This section will be devoted to describing a natural structure on three dimen-
sional submanifolds (hypersurfaces) of complex space C2 induced by the complex
structure of the ambient manifold. These so-called CR structures will turn out to
yield contact structures for 3-manifolds for a large class of 3-manifolds that can
be embedded into the space C2. Instead of proving the general case, we will check
the contact criterion in each case. We will begin with a quick outline of notation.

Earlier, we used complex notation formally without reference to real or imaginary
parts. The complex structure of the space C2 can be described in terms of real
differential geometry as follows. We can relate the space R4 and C2 with the
identification zi = xi + iyi, for i ∈ {1, 2}. At the level of tangent vectors, the
correct identification is given by

∂

∂zi

=
1

2

(

∂

∂xi

− i
∂

∂yi

)

,

∂

∂z̄
=

1

2

(

∂

∂xi
+ i

∂

∂yi

)

.

These relations can be justified by the conditions ∂
∂z

z = 1 and ∂
∂z̄

z̄ = 1. One can
spot the connection to holomorphic functions, which are the functions annihilated
by ∂

∂z̄
.

The standard complex structure on R4 is the linear map J : TC2−→TC2 defined
by the matrix

J =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









.
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Let W be a real hypersurface of C2 and let f : W −→R be a smooth defining
function for W (ie W = f−10 and 0 is a regular value for f). A CR structure for
W is given as the intersection

TW ∩ JTW.

These subbundles of the tangent bundle TC2 can be given in terms of the defining
function as

TW = Ker(df)

JTW = Ker(df ◦ J).

Let X be a vector satisfying the above requirements. Write X in terms of the real
basis as

X = a1
∂

∂x1
+ b1

∂

∂y1
+ a2

∂

∂x2
+ b2

∂

∂y2
.

Substituting the above conditions yields

∂f

∂x1

a1 +
∂f

∂y1

b1 +
∂f

∂x2

a2 +
∂f

∂y2

b2 = 0

and

− ∂f

∂x1

b1 +
∂f

∂y1

a1 −
∂f

∂x2

b2 +
∂f

∂y2

a2 = 0.

Finally changing to the complex basis defined above leads to the equivalent con-
dition

(

∂f

∂z̄1
dz̄1 +

∂f

∂z̄2
dz̄2 −

∂f

∂z1
dz1 −

∂f

∂z2
dz2

)

(X) = 0

Thus we define the calibrating form σ for the CR structure can now be given in
terms of the complex coordinates by

σ =
∂f

∂z̄1
dz̄1 +

∂f

∂z̄2
dz̄2 −

∂f

∂z1
dz1 −

∂f

∂z2
dz2.

There is a proper generalisation of this definition for CR structures (see [3]), which
yields analogous structures for 2n − 1-dimensional real manifolds that cannot be
imbedded into complex n-space.

We will identify the CR structure with the horizontal structure, as we will next
show that the horizontal structures of the embedded Heisenberg groups will con-
verge to the CR structure at the limit. Let φ be a positive real number. Substi-
tuting the defining function 2Rew2 − |w1|2 = φ for the horosphere f−1(φ) on the
Siegel domain yields the contact form

2i Im(w̄1dw1 + dw̄2).
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We might as well rescale by 2i to get the form

τ = Im(w̄1dw1 + dw̄2).

on the horosphere f−1(φ). In Heisenberg coordinates (ζ, v) for horospheres defined
by

w1 = ζ.

and

w2 =
1

2
(u + |ζ |2 − iv),

the form τ becomes the contact form on Heisenberg group

ω = Im(ζ̄dζ) + dv = dv + 2(xdy − ydx), (3.4)

where ζ = x+iy. Hence we have seen that the CR structure on horospheres of the
Siegel domain corresponds, in Heisenberg coordinates, exactly to the horizontal
structure of the Heisenberg group. The expression does not depend on horospher-
ical height. We can define a contact form on the boundary of H simply by setting
the horospherical height to zero.

A similar computation on the unit sphere in C2 yields the form

τ = z̄1dz1 − z1dz̄1 + z̄2dz2 − z2dz̄2.

The geometry of any space is best described by the classes mappings, which pre-
serve particular geometric features. In the sub-Riemannian setting, a natural class
of maps is formed by maps which preserve the contact structure. This property
can be characterised in the following way. A diffeomorphism between two sub-
Riemannian manifolds (M, ω) and (N, η), which satisfies the equation

f ∗ω = gη (3.5)

for some smooth, everywhere nonzero function g, is called a contact transformation,
or more abstractly a morphism in the category of sub-Riemannian manifolds or a
contactomorphism. Self-maps which are contact transformations are the starting
point for the study of quasiconformal and quasiregular mappings on the Heisenberg
group.

The Cayley map is an example of a contactomorphism, which can be seen directly
by substituting the Cayley transform to the contact form τ .

Proposition 3.4. The Cayley transform C : S3\{(0,−1)}−→ ∂H is a contacto-
morphism.
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Hence the Cayley transformation identifies the horizontal structures on the bound-
ary of the Siegel domain and the unit sphere S3. We will see in section 4.2 how
Cayley map identifies the infinitesimal metric structure of the Heisenberg group
with a metric version of the asymptotic boundary S3 of the complex hyperbolic
space.

Contactomorphisms do not in general preserve the metric structure: The CC
quadratic form can be distorted arbitrarily by a mapping generated by a lin-
ear mapping of the basis for the horizontal tangent space at the identity. Linear
stretching of tangent spaces is intimately connected with metric distortion. If
the topology of the manifold allows, a contact automorphism may smoothly dis-
tort the bilinear form, which defines the CC metric on sub-Riemannian manifold,
while contactomorphisms between two sub-Riemannian manifolds M and N may
smoothly distort the function M −→N defined by q 7→ dC(p, q). The characterisa-
tion theorem on conformal maps on the Heisenberg group in section 3.6 is proved
by bounding the metric or the conformal distortions. We will also give an example
of a family of maps, which distort the metric structure in a bounded manner.

3.5 The compactified Heisenberg group

We now consider the Heisenberg group as a subgroup N of G acting 1-transitively
on the punctured unit sphere.

Let Ĥ denote the one-point compactification of H given by the inclusion map
S3\{0, 1}−→S3. This map is a contact map by Proposition 3.4, when we en-
dow the sphere S with its standard contact structure as described in section 3.4.
The explicit compactification yields a way of formulating questions about geomet-
ric objects extending to infinity. This question of infinite extension was already
considered in Proposition 2.6, but now we can specialise the question to partic-
ular properties of specific objects. We return to the algebraic representation of
geometric objects extended to infinity in section 4.1.

The explicit coordinates are obtained as follows. The point (z, v) is identified
with the point (z, u+iv) on each horosphere. The coordinate transformation from
horospherical coordinates to euclidean coordinates of the Siegel domain extend to
the boundary uniquely, so at the limit we get the correspondence

(z, v)←→ (z,
1

2
(|z| − iv)).

The Cayley map is a diffeomorphism on the punctured unit sphere. Using these
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identifications, the point (z, v) ∈ H is taken to the point

(z, v)←→
(

2z

1 + |z|2 − iv
,
1− |z|2 + iv

1 + |z|2 − iv

)

.

The inverse map, which is well defined for z2 6= −1, is given by

(z1, z2)←→
(

z1

1 + z2
,− Im

1− z2

1 + z2

)

.

In Heisenberg coordinates the expressions for the action of Au and mλ on a point
p = (z, v) is given by

Au(z, v) = (euiz, v)

and
mλ(z, v) = (e−λz, e−2λv).

for λ ∈ R+ and t ∈ R. These parametrisations have the handy Lie group homo-
morphism properties

Au ◦ Au′ = Au+u′

and
mλ ◦mλ′ = mλ+λ′ ,

but for our purposes it makes sense to reparametrise the dilations mλ by replacing
λ with − log λ. Denote this reparametrised version by Mλ. It is given by

Mλ(z, v) = (λz, λ2v),

where the parameter λ ranges over the positive reals. We now recover the classical
dilation equation

dH(0, Mλp) = λdH(0, p)

in the space (H, dH) for all points p ∈ H. We will use the reparametrised version
Heisenberg dilations in the following.

We return to the question of bilipschitz-equivalence of the two metrics dH and
dC to give a proof using the Heisenberg dilation. This is not a proof for the
tight lower bound. The proof depends first of all on the continuity of dC(0, p)
in the euclidean topology. A. Bellaïche provides a proof in [2] by comparing the
CC metric of the matrix model (see [8]) of the Heisenberg group to the metric
1/3(|x| + |y| + |z| 12 , which induces the euclidean topology. The matrix model is
obtained via a diffeomorphism given in [8] from the exponential model we use.
This implies the continuity of dC with respect to the euclidean distance and the
Heisenberg metric, as these two metrics clearly induce the same topology.

Armed with the Heisenberg dilation and the continuity of dC , we finally prove the
following essential theorem.
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Proposition 3.5. The two metrics dH and dC are bilipschitz-equivalent.

Proof. Consider the CC metric unit ball BC(0, 1). As the Heisenberg metric in-
duces the same topology as the CC metric, we can choose a ball BH(0, r) in the
Heisenberg metric that is entirely contained in BC(0, 1). By applying the dilation
property, it is clear that the rescaled ball BC(0, λr) is contained in the Heisenberg
metric BC(0, λ) for any λ ∈ R. This proves that we can use r as the lipschitz
constant for the lower bound in equation 2.5.

Heisenberg rotations reveal the rotational symmetry present in both the metric
geometry of (H, dH) (where it is rather obvious from the expression of the metric)
and the sub-Riemannian manifold H. In the CC context, the rotations could have
been realised through an orthonormal change of basis for the horizontal structure
at the origin. The following proposition follows immediately.

Proposition 3.6. Heisenberg rotations and translations are isometries of the
Heisenberg group.

This fact is also clear from the symmetry of the parametrisations for geodesics.
We also have the following scaling property for Heisenberg dilations in terms of
the CC metric.

Proposition 3.7. The (reparametrised) Heisenberg dilation satisfies

dC(0, Mλp) = λdC(0, p)

for any 0, p ∈ H.

Proof. The tangent map of Mλ is given by

(Mλ)∗γ
′ = (sγ1, sγ2, s

2γ3) (3.6)

for any horizontal curve γ, so the dilated curve Mλ ◦ γ is a horizontal. The action
on the length is given by

L(Mλ ◦ γ) = λL(γ),

which proves the claim.

The infinity point (0,−1) is a fixed point of every element of G.

The identification of the contact structure on S3 and H provides new information
about the geometry of H. Consider the inversion j : S3−→ S3 defined by the
equation

(z1, z2) 7→ (−z1,−z2).
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This map can be aquired as the boundary extension of the isometry of the complex
hyperbolic space defined on the ball model by the same equation. Moreover, the
map preserves the contact form on S3 defined in equation 3.4, so it is a contact
transformation. The map j induces a map on the Heisenberg group, and the
formula

j(z, v) =

( −z

|z|2 + iv
,
−v

|z|4 + v2

)

. (3.7)

can be read from the diagram in equation 3.3. The inversion is a contact trans-
formation on the Heisenberg group by composition. Conjugation by translations
and dilations yields the group of general Heisenberg inversions, which are contact
transformations.

If we look at the coordinate expressions of the maps Sim(H) and the Heisenberg
inversion, we see that these maps restrict to the usual Möbius maps on the the
v = 0 plane, and in fact any horizontal plane.

3.6 Conformal Geometry of the Heisenberg Group

We continue the study of contact mappings in a class with restricted infinitesimal
metric distortion. This section contains a brief introduction to the theory of qua-
siconformal mappings, with a view towards fully describing the conformal group
of the sub-Riemannian Heisenberg group. We include a series of proposition due
to the paper [1] by Korányi and Reimann. Our goal will be the statement of their
result on the rigidity of the conformal structure of the sub-Riemannian Heisenberg
group.

Intuitively, a conformal map is a map, which stretches the metric uniformly in
each direction. In order to follow [1], we relax the requirement of smoothness to
C1 differentiability.

Define the quantities

a(p, r) = max{|f(x)− f(p)| : |x, p|H = r}

and
b(p, r) = min{|f(x)− f(p)| : |x, p|H = r},

where B denotes the metric ball of the Heisenberg metric dH. Let K be a real
number such that K ≥ 1. The C2-diffeomorphism f is K-quasiconformal at p if
the ratio, or the conformal distortion at point p, satisfies the inequality

lim sup
r→0

a(p, r)

b(p, r)
≤ K.
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A K-quasiconformal map with K = 1 is called conformal. One can use the CC-
metric to define quasiconformality. Due to the bilipschitz-equivalence of the two
metrics, they lead to the same classes of quasiconformal maps.

The first aim is to relate K-quasiconformality to the differential and contactness
of map. In this vein we cite the following theorems.

Proposition 3.8 ([1]). A differentiable K-quasiconformal mapping with a non-
singular derivative is a contact transformation.

Define the notation

λ1 = sup
|V |H=1

|f∗V |H, λ2 = inf
|V |H=1

|f∗V |H ,

where the length of the vector V = aX + bY + cV is measured from the CC inner
product

√
a2 + b2.

Proposition 3.9. [1] A contact transformation which is twice differentiable and
satisfies

λ1

λ2
(p) ≤ K

is K-quasiconformal.

Proposition 3.10. Elements of the similarity group Sim(H) are contact transfor-
mations and they satisfy λ1 = λ2.

Proof. Contactness of a map is preserved by composition and in inverting a map.
Isometries are clearly contact transformations, so it suffices to consider the dilation
about a vector about the origin, for which contactness follows from the expression
for the tangent map in 3.6. The second part follows from the fact that the tangent
maps of elements of G are orthogonal on horizontal bundle.

As a corollary to Proposition 3.10 we have the following theorem.

Corollary 3.1. [1] Elements of G are conformal.

The conformality of the Heisenberg inversion will follow from our final result,
Corollary 4.1.

Finally we state the converse, which is the main result of [1].

Proposition 3.11. [1] The full conformal group is generated by the Heisenberg
similarity group and the Heisenberg inversion jH.
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4 Visual Geometry

4.1 Visual geometry of the Heisenberg group

We now return to performing computations in exponential coordinates. In par-
ticular, we focus on the parametrisations for geodesic arcs derived section 2.4.
The focus is shifted from studying the space itself to studying a pointed space of
geodesic arcs and their infinite extensions called rays. We will title this shifted
viewpoint as visual geometry. We will define a parametrisation of the Heisen-
berg group in terms of these geodesics and study its topological properties. The
resulting map is as close as one can get to defining an exponential map on the
sub-Riemannian Heisenberg group.

A geodesic with the initial point p, which has been extended to infinity will be
called a ray emanating from p. In the Heisenberg space H all geodesic arcs can
be infinitely extended into rays by the parametrisation given in section 2.4. An
example of a geodesic ray emanating from the origin in H is given by the lift of
the curve s 7→ eis− 1, where s ∈ [0,∞).

The circle bundle H/R∗ ≃ S1H can be given a global coordinate t ∈ S1, by setting

t 7→ cos(t)X + sin(t)Y.

Recall that we parametrised the set of nonconstant geodesic arcs starting from the
origin in terms of triplets (t, c, s) ∈ S1×R×R+. The collection of geodesic arcs is
carried to any point p by left translation. We will assign the symbol GAp for the
space of geodesic arcs staring from p, where the value 0 for the length parameter
corresponding to the trivial geodesic is included for convenience. These triplets
correspond to the choice of direction, curvature and length of the geodesic. From
now on, we identify triplets of this form with the unit speed parametrised geodesic
arc starting from a fixed point p ∈ H. We will assign the symbol GAp to this space
of geodesic arcs.

Let q be a point on H and (t, c, s) be a geodesic arc starting from p, which we will
now write explicitly. Heisenberg translations, rotations and dilations act on the
geodesics according to the expressions

Lq(t, c, s)p = (t, c, s)qp ,

Mλ(t, c, s)p =
(

t,
c

λ
, λs
)

Mλp

and
Au(t, c, p)p = (t′, c, s)Aup ,
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Figure 2: The view from the origin in the t = 0 direction.

where t′ is the global coordinate obtained by left translating the vector

cos(t + u)
∂

∂x
+ sin(t + u)

∂

∂y
.

This is easily seen to define the action of G on the bundle GAH of geodesic arcs.

Example 4.1. While the horizontal plane appears two dimensional, it is still
a way to make a two-dimensional visual picture of ones surroundings, based on
differentiating rays by their curvature. Natural questions of visibility can be asked
in CC-geometry: How do the shape and the position of an object determine its
appearance to an observer? The answer depend on the extrinsic features of the
coordinate system, as well as the intrinsic features of the geometry. The notion of
visibility is copied from euclidean intuition: A subset is visible from the point p in
the direction of a ray, if the ray crosses the subset.

To get a feeling of the non-isotropic nature of visual CC-geometry, consider the
following example. How does the appearance of a sphere of radius L depend on its
location? If the centre of the sphere is located on a ray of zero curvatur and is far
away from the observer, the image resembles a rounded box of width proportional
to L and height proportional to

√
L. As the sphere is moved closer to the observer,

portions of the sphere, which are off the horizontal plane, begin appearing at areas
of larger absolute value of curvature.

Next assume that the center of the sphere is vertical relative to the observer.
Firstly, the image is homogenous in the t-direction and fills the whole visual cylider
for large values of c. The observer will also see horizontal strips, whose number
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and width depend on the distance and radius of the sphere. Notice how the visual
image is invariant under Heisenberg similarities. It is instructive to try to figure
out what features of the space in this highly coordinate dependent picture are
invariant under metric distorting contactomorphisms.

The parametrisation of geodesic arcs set gives us coordinates, in a sense, in terms
of direction, curvature and distance by a (noninjective) mapping

Fp : GAp−→R
3,

where the image of Fp is defined the be the end point of the geodesic arc (t, c, d)
starting from p. This map is a restriction of the end-point map, and its domain
is a four dimensional submanifold of the Banach space of functions. Hence the
properties of Fp can be described in the language of finite dimensional smooth
manifolds. Its expression for p = 0 is given by the parametrisation

(t, c, s)←→
(

1

c
(
(

eci(s−π/2) ± ieit
)

,± 2

c2
(sin(cs)− cs)

)

for c 6= 0 and
(t, c, s)←→

(

seit, 0
)

All properties of the mapping Fp we are interested in are preserved, when we
compose Fp with a left-translation, hence we may assume that p = 0.

A metric on the space of geodesic arcs can given by the obvious inclusion of S1 ×
R× [0,∞) into R4 as the complement of an open cylinder. The CC length function
takes now a particularly simple form. Namely it is given by the projection to the
third coordinate, so in particular, it is a continuous map.

We would like F0 to be a local homeomorphism, which would yield us geodesic
coordinates analoguous to an exponential map defined on a manifold. However,
as we discussed eariler, geodesics connecting points in vertical relative position are
not locally unique. The map F0 is continuous, as it is a composition of smooth
functions when c 6= 0, and the limits agree when c approaches zero. Notice,
however, that the derivative map (F0)∗ of F0 does not converge as c tends to 0.
Restricting F0 to nonzero c and the parameter s to values not multiple of 2πR,
the restriction of F0 becomes a smooth covering map onto its image. Allowing c to
take the value 0, we get still get a topological covering. Still, the nonimmersivity
in the vertical direction can not be circumvented.

Consider the quotient space

V (H) = GAp/Fp,
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where we identifies points with the same images under Fp. For the definition to
make much sense, the map Fp should have nice topological properties. On any
n-manifold, the above construction always yields locally the space Rn, as one can
always find a neighbourhood where the exponential function, which now takes the
place of Fp, is a diffeomorphism. The following problem relates the visual geometry
of the sub-Riemannian Heisenberg group to the space of geodesic arcs.

Problem 1. Describe the topology of the quotient space V (H).

The answer is mostly given by our previous discussion of the mapping Fp. The
lack of local injectivity complicates the situation.

As a simple example of how the viewpoint presented in this section could be
applied, we construct arbitrarily long geodesics connecting two points arbitrarily
close to each other.

Example 4.2. Let γk be the infinite collection of geodesics of increasing distinct
lengths between points 0 and (0, 0, 1) as in example 2.2. Apply the Heisenberg
dilation about the origin by a factor 1/

√
k on each of the paths, whose indices

are perfect squares. We obtain a sequence γ̃k2 such that γ̃k2 connects the points
(0, 0, 0) and (0, 0, k−1). The CC length of the paths we have constructed satisfies

L(γ̃k2) =

√

k

π
,

which can be made arbitrarily large.

The geodesics γ̃k2 can be extended slightly to construct arbitrarily long geodesics
connecting two points, which are not in vertical position relative to each other.
Here we use the continuity of CC distance.

Explicit description of the geometry of H done in this section, as well as sections
2.4 and 3.2 have demonstrated how the sub-Riemannian Heisenberg geometry has
the following properties, when restricted to the horizontal plane.

• It is flat in the sense that geodesic triangles with two points on two zero-
curvature rays are scaled as in euclidean geometry.

• It is isotropic in the sense that the horizontal plane can be rotated by isome-
tries.

• It the same linear scaling property as the euclidean plane.

39



Hence, as advocated by A. Korányi in [6], the sub-Riemannian geometry of the
Heisenberg group is natural generalisation of two-dimensional flat, homogenous
and isotropic geometry, that is, the geometry of the euclidean plane. We have not
discussed higher dimensional analogues of the Heisenberg group, but they gener-
alise the geometry of any even dimensional euclidean space in a similar fashion.

As an application of the explicit compactification of the Heisenberg group in section
3.5, we compute the tangent vector of a ray at infinity.

Example 4.3. Consider the ray (t, 0, 0) (zero curvature, emanating from the
origin) on the compactified Heisenberg group. In exponential coordinates, this
geodesic has the parametrisation depending on the direction t↔ eφi

(eφis, 0)

in terms of the real parameter s.

This geodesic is parametrised on the boundary of the Siegel domain by

w1 = eφis, w2 =
s2

2
.

The Cayley transform takes points of this form to points

z1 =
2eφis

1 + s2
, z2 =

1− s2

1 + s2

on the unit sphere S3. The tangent vector of this curve is

1

(1 + s2)2

(

2eφi(1 + s2),−4s
)

.

The initial and limiting directions of the tangent vector are given by
(

eφi, 0
)

and
(

−eφi, 0
)

, respectively, so the direction is reversed in the ambient space C2. This is
what one might guess based on intuition from two-dimensional euclidean geometry.

It may be interesting to know what happens to curved geodesics, and write out a
full expression for a mapping from the bundle of rays to the unit tangent space at
infinity, where a ray is mapped to its tangent vector at the limit, if one exists.

We may now apply the terminology to the following questions about the existence
of maps of bounded distortion, which change the curvature of rays.

Problem 2. Is there a K-quasiconformal map of H taking a c > 0-type geodesic
ray to one of type c = 0?
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According to [10], the problem is related to a in mapping problem complex ge-
ometry of exchanging the real and complex slices at the boundary of the complex
hyperbolic plane. One can relax the injectivity requirement and ask the question
same question in the class of quasiregular mappings.

Problem 3. Is there a K-quasiregular map of H taking a c > 0-type geodesic ray
to one of type c = 0?

4.2 The Gromov ideal boundary of the complex hyperbolic

space

We have considered the compactified Heisenberg space given by the Cayley map.
The metric structure on the boundary was aquired as a limit of rescaled restrictions
of the Bergman metric in section 3.3, where it was shown that the metric space
(H, dC) appears as the asymptotic boundary of the complex hyperbolic space. The
conformal geometry of the Heisenberg group related to a visual geometry of the
complex hyperbolic space, which will be the subject of this section. The connection
appears as we define a metric analoguous to the chordal metric, which yields the
conformal structure of euclidean space for the unit sphere [15].

The aim is to define a metric on the asymptotic boundary of complex hyperbolic
space CH

2. The boundary is usually formally be defined as a maximal set of met-
rically (in the Gromov-Hausdorff sense) divergent curves. Our description of the
boundary is slightly simpler construction, which apart from our more specialised
notion of rays follows [8]. The term visual boundary is natural in our case, as we
use the term visual geometry to mean the study of geodesic rays.

Consider the set of rays emanating from a point p ∈ CH
2. Two rays x(t) and y(t)

are said to asymptotic, if there is a positive number M such that d(x(t), y(t)) < M .
On complete Riemannian 3-manifolds the set of rays emanating from a point p is
in one-to-one correspondence with the visual sphere S3 consisting of unit tangent
vectors at p. A direct way to see this fact on complex hyperbolic space was
described in section 3.1 in the proof of uniqueness of geodesic arcs. This along
with the high degree of symmetry of the space CH

2 lead to a simple description
of the visual boundary.

Proposition 4.1. Two rays on the complex hyperbolic 2-space emanating from the
same point are asymptotic if and only if they are equal.

Proof. Consider the ball model for complex hyperbolic 2-space. Let x(t) and y(t)
be rays in CH

2. By transitivity of isometries of CH
n, we may assume that p = 0,

in which case the rays are straight line segments connecting 0 and some point on
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the bounding sphere S3. By remarks made in section 3.1, the parametrisations for
the rays are given by x(t) = f(t)ξ and y(t) = g(t)η for some increasing continuous
functions tending to 1 on R and points ξ and η in S3. Hence the distance of two
points on the rays at time t is given by

d(x(t), y(t)) =
1− f(t)g(t)(ξ, η)

√

(1− f(t)2)(1− g(t)2)
. (4.1)

The quantity above approaches infinity, if the limit points are distinct. If it is
bounded, it is clear that the two rays must be equal.

Hence the intuitive idea of the asymptotic boundary corresponds to our definition.
The points on sphere S3 correspond uniquely to classes of geodesic rays. In fact,
we may even consider an arbitrary set of isometric embeddings of R into the space
CH

2 and obtain the same asymptotic boundary set as the quotient under the
asymptoticity equivalence relation [9]. We wish, however, to stick to the set of
rays emanating from a point, because this way the identification with the visual
sphere (the unit tangent space) becomes obvious.

Let (X, d) be a metric space. For x, y, p ∈ X define the Gromov product to be

(x|y)p =
1

2
((d(x, p) + d(y, p)− d(x, y))

Extend the Gromov product to the set of rays by setting

(x(t)|y(t))p = lim
t→∞

(x(t)|y(t))p ,

where we think of x(t) and y(t) as the ray and its value at t. The limit exists for
rays on CH

2 [9].

There is a canonical way of making ∂∞CH
2 into a metric space by defining the

metric
ρp = lim

t−→∞
exp (−(x(t)|w(t))p) (4.2)

We will call a metric obtained by this construction a visual metric.

Our next objective is to compute the visual metric for the ideal boundary ∂∞CH
2

of complex hyperbolic space. We stick to the ball model from now on. Let ξ and η
denote points on the unit sphere S3 corresponding to geodesic rays x(t) and y(t),
respectively. A natural choice of base point is 0 for the ease of parametrising the
rays. The Gromov product can be evaluated as from the equation

ρ0(ξ, η) = lim
t→∞

exp(−(x(t)|y(t))0.
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After substituting the distance function defined in 3.1, the expression exp(−(x(t)|y(t))0

takes the form
(

|1− (x, y)|+
√

|1− (x, y)|2 − (1− |x|2)(1− |y)2

(1 + |z|)(1 + |w|)

)1/2

,

which at the limit tends to

ρ0(ξ, η) =

√

|1− (ξ, η)|
2

. (4.3)

This generalisation of the chordal metric was defined by Mostow in [11] in the
course of proving a rigidity results for a class of Lie groups, which includes groups
acting on the complex hyperbolic space. We will use this metric to describe a
connection between visual geometry on the space CH

2 and conformal geometry of
the Heisenberg group. The base point will be kept fixed at the origin and omitted
from the notation.

Proposition 4.2. The Cayley transform C : (H, dH)−→(S3\{(0,−1)}, ρ) is a con-
formal map.

Proof. We will prove this fact by showing that the metric ρ defines the same
infinitesimal structure as the Heisenberg metric. Both metrics are left-invariant,
as the visual metric was defined in terms of the complex hyperbolic distance. Hence
it suffices to compare distances from a single fixed point.

We will work in Heisenberg coordinates for the punctured sphere S3\{(0,−1)}.
Let p be the point (1, 0) corresponding to the origin (0, 0, 0) ∈ H and q = (q1, q2)
is an arbitrary point on the punctured sphere.

Given these choices, the metric ρ has the form

ρ(0, q) =

√

|1− q2|
2

.

In coordinates, the coordinate q2 has the expression

q =
1− |z|2 + iv

1 + |z|2 − iv
,
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hence ρ has the expression

ρ(0, (z, v)) =

√

∣

∣

∣

∣

|z|2 − iv

1 + |z|2 − iv

∣

∣

∣

∣

=

( |z|4 + v2

(1 + |z|2)2 + v2

)1/4

=
dH(0, (z, v))

1 +O(dH(0, (z, v)))2

on the Heisenberg group H. This shows that the two metrics dH and ρ are the
same up to a first order approximation for two points that are close to each other.
Hence the limits lim supr→0 a(0, r) and lim infr→0 b(0, r) for the identity mapping
(H, ρ)−→(H, dC) must be the same. This proves our claim.

Finally, we state the formal conclusion that conformal groups of the two spaces are
identified by the Cayley transform, as conformality is preserved in composition.

Corollary 4.1. The class of conformal mappings on the space (S3\{(1, 0)}, ρ) is
obtained by conjugating the conformal group of H by the Cayley transform.

Notice that the visual metric gives us a fourth way to define the same length metric
structure, besides the usual CC construction, one using the Heisenberg metric and
the collapsing of the hyperbolic metric at the boundary.

5 Conclusions

The Heisenberg group was shown to be a sub-Riemannian manifold with nontrivial
metric structure, whose geometry is at each point an extension of the planar geom-
etry. The algebraic study of geodesics was greatly simplified by the use of exponen-
tial coordinates. We dealt with the complex hyperbolic space and especially how
the Heisenberg group appears as an embedded subgroup. The sub-Riemannian ge-
ometry of the Heisenberg group appeared at the boundary of the ambient complex
hyperbolic space by collapsing the hyperbolic metric, which suggested the tech-
nique of Riemannian approximation. The identification of the Heisenberg group
with a compact topological boundary of the complex hyperbolic space allowed the
two-way traffic of ideas and algebraic expressions between the sub-Riemannian and
complex hyperbolic worlds. The visual viewpoint yielded another way to describe
the differences and similarities of (locally) euclidean and sub-Riemannian spaces.
We also saw how the language could be applied to asymptotic geometry on the
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complex hyperbolic space to find a connection to the conformal geometry of the
sub-Riemannian Heisenberg group.

While many of the results we presented were not fully proved, an attempt was
made to either mention the idea of the proof or cite a source for a complete proof.
The Heisenberg group has extensively studied and many different aspects of it
have appeared in papers and books. Many texts contain the skeleton of the same
facts we have discussed, but we have tried to write out some constructions and
proofs in more detail than what could be found in the sources cited.
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