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Abstract. We show that the interplay between the planar Beltrami equation govern-
ing quasiconformal and quasiregular mappings and Calderón’s conductivity equation in
impedance tomography admits a counterpart in the setting of the first Heisenberg group
equipped with its canonical sub-Riemannian structure.

1. Introduction

In this paper we extend to the first Heisenberg group endowed with its standard sub-
Riemannian (Carnot-Carathéodory) structure, some aspects of geometric function theory
and elliptic PDE in the plane. Especially we show that the beautiful bridge between planar
quasiconformal mappings governed by the Beltrami equation and the problem of impedance
tomography as formulated by Calderón materializes analogously as in the plane [2]. Al-
though the situation is much more rigid in the Heisenberg group than it is in the plane,
it is interesting that—at least formally—the successful planar methods outlined in [1] have
natural sub-Riemannian counterparts.

A large part of the motivation for this paper comes from applications in engineering
and medical diagnostics. We presume that the first Heisenberg group is a potential local
model for studies related to electromagnetism and anisotropic media. It is also interesting
to observe that biharmonic equations rise in this setting.

We introduce certain nonlinear PDE systems, the so-called conductivity equations, which
can be written in vector form as

(1.1) ∇H ×
(
Jσ∇Hu

)
= 0,

for a real valued function u on a domain in the Heisenberg group H and a horizontal
conductivity matrix σ. Here ∇Hu denotes the horizontal gradient of u, while J denotes
the standard planar skew-involution acting on the horizontal tangent bundle HH. The
equation (1.1) is third-order with respect to horizontal derivatives. In Theorem 3.3, we
show that the components of a sufficiently regular quasiregular map of H satisfy such a
system. These systems are obtained from the usual Beltrami equation via the identification
of the complex dilatation with a measurable conformal structure. In the Heisenberg setting
the conductivity equation is formulated using the notion of the horizontal curl ∇H × V of
a horizontal vector field V , which has been recently studied by Franchi et al. [8], [9].
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We also present (see Theorem 3.5) an equivalent formulation in terms of differential forms:

(1.2) δc(σdcu ∧ τ) = 0,

where dc is the horizontal exterior derivative acting on functions, δc is the formal horizontal
L2-adjoint acting here on 2-forms, and τ is the standard contact form defining the horizon-
tal distribution in H. Equation (1.2) allows us to write down a weak formulation of the
conductivity equation (1.1). Using this language, we show how to introduce div-curl couples
analogously as for the Hodge ∗ method in the plane case as explained in [1, Chapter 16].

More to the point, we show that the preceding process can be reversed. To each solution
f to a given conductivity equation (1.1), we associate a conjugate solution g to the same
equation. The pair (f, g) then satisfies a conductivity system. Provided a certain compati-
bility condition is satisfied (see (4.5)), we further associate to the pair (f, g) a third function
h so that the triple (f, g, h) defines a contact map of H. If the original conductivity equation
satisfies an appropriate ellipticity bound, then the induced map F = (f, g, h) is quasireg-
ular. This provides a new method for constructing quasiregular maps of the Heisenberg
group.

Although the standard complex Beltrami equation can be written in real form

(1.3) DHF (p)TDHF (p) = λ(p)σ(p)

also in the higher dimensional Heisenberg groups Hn, n > 1, we do not know if there is
any relation between the horizontal 2n × 2n conductivity matrix and the complex antilin-
ear mapping µ acting on the holomorphic vectors of the complexified horizontal bundle, as
described in [12]. Mappings F as in (1.3) act on domains of Hn and the conformal factor λ
coincides with (detDHF (p))1/n if σ is considered as a conformal structure and the normal-
ization detσ = 1 is assumed. It is also not yet understood in higher dimensional Euclidean
spaces if there is any connection between solutions to conductivity equations and quasicon-
formal mappings satisfying the real Beltrami equation. In Hn the relevant equations could
be those that are formulated in R2n corresponding to horizontal operations.

One could also consider more general Beltrami equations containing complex dilatations
µ and ν as in [1, Theorem 16.1.6] and study their generalizations to the first Heisenberg
group. We return to this and other aspects of this study elsewhere.

Acknowledgements We thank Matti Lassas, Svitlana Mayboroda, Zoltán Balogh and
Bruno Franchi for valuable motivation and inspiration on the subject of this paper. KP
and JTT also want to thank the Mathematics Department of the University of Bern and
the organizers of the XXI Nevanlinna Colloquium in Kyoto and the Triennal Ahlfors-Bers
Colloquim in Rice University for their hospitality.

2. Background material

2.1. Quasiconformal and quasiregular maps in the Heisenberg group. We denote
by H the first Heisenberg group, with coordinates p = (x1, x2, x3). We also use complex
notation p = (z, x3), where z = x1 + ix2. For the basic theory of the sub-Riemannian
structure of H we refer to [5].

A real-valued function u defined on a domain U ⊂ H is said to lie in the horizontal
Sobolev space W 1,p

H (U) if all iterated partial derivatives of u with respect to the operators
X1 and X2 exist weakly as elements of Lp(U). Here we have denoted by X1 = ∂x1 + 2x2∂x3
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and X2 = ∂x2 − 2x1∂x3 the usual basis of horizontal vector fields in H. Replacing Lp with
Lploc yields the local horizontal Sobolev space W 1,p

H,loc(U).
Quasiregular mappings of H were first considered by Heinonen and Holopainen [10]; the

basic regularity assumptions required for the theory were clarified by Dairbekov [6].
Let U,U ′ ⊂ H be domains. We consider maps F : U → U ′ which we write in real

coordinates as F = (f1, f2, f3). We say that F ∈W 1,p
H,loc(U) if fj ∈W 1,p

H,loc(U) for j = 1, 2, 3.

Definition 2.1 (Heinonen–Holopainen [10]; Dairbekov [6]). Let K ≥ 1. A continuous map
F : U → U ′ in the local horizontal Sobolev space W 1,4

H,loc(U) is called K-quasiregular if F is
a generalized contact map and the dilatation estimate

(2.1) ||DHF (p)||2 ≤ K detDHF (p).

holds for a.e. in p ∈ U .

We recall that F is said to be a generalized contact map if

τp(X1F ) = τp(X2F ) = 0 for a.e. p ∈ U ,

where
τ = dx3 + 2x1 dx2 − 2x2 dx1

denotes the standard contact form defining the horizontal distribution in H. The expression
τp(XjF ) is shorthand for the action of τ on the vector (Xjf1, Xjf2, Xjf3) at p, i.e.

τp(XjF ) = (Xjf3 + 2f1Xjf2 − 2f2Xjf1)(p).

The horizontal differential DHF of F at p is the 2× 2 matrix

DHF (p) =
(
X1f1(p) X2f1(p)
X1f2(p) X2f2(p)

)
.

The notation ||A|| denotes the operator norm of a matrix A.
Observe that (2.1) is equivalent to

||DHF (p)||4 ≤ K2(detDHF (p))2

which is a more traditional formulation for the quasiregularity condition on H (see, e.g.,
[10] or [6]). A generalized contact map F as above acts on the contact form τ according to
the formula

F ∗τ = λτ

with λ = detDHF . In this setting, the quantity

λ · detDHF = (detDHF )2

represents the volume derivative of the map F . (For C1 maps, this coincides with the full
Jacobian detDF .)

For later use we recall the following result of Dairbekov, see Remark 3 in [6].

Theorem 2.2 (Dairbekov). Let F ∈ W 1,4
H,loc(U,H) be a generalized contact map verifying

the dilatation estimate (2.1) for a.e. p. Then F is continuous, i.e., F is K-quasiregular.

We next recall from [11], [13] the formalism of Beltrami differentials on the Heisenberg
group. To this end it is convenient to introduce additional notation which is motivated by
the appearance of the Heisenberg group as the group of translations of the Siegel upper
half space. We will write F = (fI , f3), where fI = f1 + if2. We also use the notation
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fII = f3 + if4 = f3 + i|fI |2. Let us remark that f4 is also in W 1,4
H,loc(U) since fI is continuous

and lies in W 1,4
H,loc(U).

Denote by D = {z ∈ C : |z| < 1} the unit disc in the complex plane. Then to each
quasiregular map F as defined above, there exists a map µ : H→ D with ||µ||∞ < 1 and

(2.2) Zf` = µZf`, ` = I, II.

Here Z = ∂z + iz∂x3 = 1
2(X1 − iX2) and Z = ∂z − iz∂x3 = 1

2(X1 + iX2). We call µ the
complex dilatation of F . If F is K-quasiregular, then

(2.3) ||µ||∞ ≤ k < 1

where

(2.4) k =
K − 1
K + 1

.

Conversely, every continuous map F : U → H in W 1,4
H,loc satisfying (2.2) with µ satisfying

(2.3) is K-QR with K and k related by (2.4).

2.2. Horizontal div, grad, curl and corresponding intrinsic forms. We introduce
the Folland–Stein regularity class CkH(U) consisting of real-valued functions u defined on
U for which all of the k-fold iterated horizontal partial derivatives Xi1Xi2 · · ·Xiku, where
i1, . . . , ik ∈ {1, 2}, exist and are continuous.

We say that a (continuous) vector field V defined on U is horizontal if V (p) lies in the
horizontal tangent space HpH := span{X1, X2}(p) for every p ∈ U . The horizontal gradient
of a function u ∈ C1

H(U) is the horizontal vector field

(2.5) ∇Hu = (X1u)X1 + (X2u)X2.

The horizontal divergence of a C1
H horizontal vector field V = a1X1 + a2X2 is the function

(2.6) ∇H · V = X1a1 +X2a2.

We now recall the notion of horizontal curl of a horizontal vector field, introduced by
Franchi, Tchou and Tesi in [8] and further studied in [9].

Definition 2.3 (Franchi–Tchou–Tesi). Let V = a1X1 + a2X2 be a C2
H horizontal vector

field on U . The horizontal curl of V is the horizontal vector field

(2.7) ∇H × V = P1(V )X1 + P2(V )X2,

where

(2.8) P1(V ) = P1(a1, a2) = 1
4 (X2X2a1 − 2X2X1a2 +X1X2a2)

and

(2.9) P2(V ) = P2(a1, a2) = 1
4 (X1X1a2 − 2X1X2a1 +X2X1a1) .

Note that the horizontal curl is a second-order differential operator in the horizontal
partial derivatives X1 and X2.

Theorem 2.4 (Franchi–Tchou–Tesi). (a) For any C3
H horizontal vector field V ,

∇H · (∇H × V ) = 0.

(b) For any u ∈ C3
H(U), ∇H × ∇Hu = 0. Conversely, if ∇H × V = 0 for some C2

H
horizontal vector field V on a simply connected domain U , then there exists u ∈ C3

H(U) so
that V = ∇Hu.
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In this paper the following representation for the horizontal curl operator will play an
important role:

(2.10) ∇H × V = JTV − 1
4J∇H(∇H · JV ).

Here

(2.11) T = ∂x3 = −1
4 [X1, X2] = 1

4∇H · J∇H

denotes the vertical (Reeb) vector field in H, while

J =
(

0 −1
1 0

)
denotes the usual skew-involution of the plane. The operator J naturally acts on horizontal
vector fields in the following way: if V = a1X1 + a2X2 is a horizontal vector field, then
JV = −a2X1 + a1X2. The notation TV means that the operator T is applied to each of
the components of V : if V = a1X1 + a2X2 then TV = (Ta1)X1 + (Ta2)X2.

Remark 2.5. The factor of 1
4 in (2.8) and (2.9) is merely a normalization. With this factor

included one has a version of Stokes’ formula on the Heisenberg group which exactly parallels
the Euclidean case; see Theorem 5.3 in [8]. This multiplicative factor is irrelevant for the
purposes of this paper.

Remark 2.6. From (2.10) and (2.11) we observe the following simple expression for the
horizontal curl:

∇H× = 1
4J [∇H · J,∇H].

We will not use this expression in this paper, but record it as a useful mnemonic.

There is another approach to the horizontal curl which uses the language of differential
forms. For the purposes of this paper, we briefly sketch the setup for the horizontal differ-
ential complex (Rumin complex) (E∗0 , dc) in the first Heisenberg group. Here we follow the
explicit representation in [9] based on M. Rumin’s theory of intrinsic forms [15], [16].

Denote by (Ω∗, d) the usual de Rham complex of differential forms on H (identified with
R3). The horizontal differential 1-forms are obtained from the horizontal vector fields X1

and X2 by the usual musical isomorphism [: X[
i = dxi, i = 1, 2. For the Reeb vector field

we have T [ = τ . We use the notation Ej0, j = 0, 1, 2, 3, for the horizontal j-forms: E0
0 = Ω0,

E1
0 = span{dx1,dx2},

E2
0 = span{dx1 ∧ τ,dx2 ∧ τ},

E3
0 = span{dx1 ∧ dx2 ∧ τ}.

(2.12)

From the actions of dc on E∗0 we need the property

(2.13) d2
c = 0

and the action dc : E1
0 → E2

0 that is given, for α = α1dx1 + α2dx2, by

(2.14) dcα = −P2(α1, α2)dx1 ∧ τ + P1(α1, α2)dx2 ∧ τ.
The formal L2 adjoint δc : E2

0 → E1
0 of dc is given for α = α13dx1 ∧ τ +α23dx2 ∧ τ ∈ E2

0 by

(2.15) δcα = P1(α23,−α13)dx1 + P2(α23,−α13)dx2.

We emphasize that the resulting Rumin complex (E∗0 , dc) is exact, see Theorem 5.8(v) in
[9].
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The Hodge duality in (Ω∗,d) with respect to the usual scalar product and the volume
form dV := dx1 ∧ dx2 ∧ τ is denoted by ∗. Its action on horizontal 1-forms ∗ : E1

0 → E2
0

is given by ∗(dx1) = dx2 ∧ τ , ∗(dx2) = −dx1 ∧ τ . The action of the skew-involution J on
horizontal 1-forms, which we again denote by J : E1

0 → E1
0 , is naturally given by conditions

J(dx1) = dx2, J(dx2) = −dx1. Therefore one gets an action ∗J : E1
0 → E2

0 given by
∗J(dx1) = −dx1 ∧ τ , ∗J(dx2) = −dx2 ∧ τ , whence

(2.16) (∗J)(α) = −α ∧ τ for every α ∈ E1
0 .

The relation between dc : E1
0 → E2

0 and δc : E2
0 → E1

0 then reads dc = ∗δc∗.
Note that the operator 1

4J∇H appearing in (2.11) is related to the vector field

Xu :=
1
4
J∇Hu

which traditionally goes by the name of the symplectic gradient of u. The vector field Xu

is uniquely determined by the condition

(2.17) Xuydτ = −dcu.

3. The conductivity equation in the Heisenberg group

In this section we introduce the conductivity equation associated to a complex dilatation
on the Heisenberg group. This is a linear PDE system which is satisfied by the components
of any quasiregular mapping with the given dilatation.

We are motivated by the corresponding theory for planar quasiregular maps [1, Chapter
16]. Let us recall that the hyperbolic disc (D, ρD) (ρD denotes the hyperbolic metric in D)
is isometric to the space

(3.1) S(2) = {σ ∈M2×2(R) : σJσ = J, tr(σ) > 0} .

of symmetric positive definite 2 × 2 matrices Y of determinant one equipped with the
distance function ρg generated by the Riemannian metric g = 1

2 tr(Y −1 dY )2. The isometric
identification is given as follows:

(3.2) µ→ σ =
1

1− |µ|2

(
|1− µ|2 −2 Imµ
−2 Imµ |1 + µ|2

)
or

(3.3) µ =
A− C − 2iB
A+ C + 2

← σ =
(
A B
B C

)
.

We call σ the conductivity matrix.
In our derivation of the conductivity equation on the Heisenberg group, we follow the

approach indicated in the final section of [3].
Suppose that F = (fI , f3) is a K-quasiregular map of a domain in H. In order to derive

the conductivity equation, we begin from the Beltrami equation ZfI = µZfI which we
separate into real and imaginary parts by writing µ = α+ iβ. We obtain

(X1 + iX2)(f1 + if2) = (α+ iβ)(X1 − iX2)(f1 + if2),

which is equivalent to the pair of equations

X1f1 −X2f2 = α(X1f1 +X2f2)− β(X1f2 −X2f1),

X2f1 +X1f2 = β (X1f1 +X2f2) + α (X1f2 −X2f1) .
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Rearranging yields

(1− α)X1f1 + βX1f2 = (1 + α)X2f2 + βX2f1,

(1− α)X1f2 − βX1f1 = −(1 + α)X2f1 + βX2f2.

These equations in turn imply(
(1− α)2 + β2

)
X1f2 = 2βX2f2 + (β2 + α2 − 1)X2f1,(

(1− α)2 + β2
)
X1f1 = (1− α2 − β2)X2f2 + 2βX2f1,

which is equivalent to

(1− α)2 + β2

1− α2 − β2
X1f2 =

2β
1− α2 − β2

X2f2 −X2f1,(3.4)

(1− α)2 + β2

1− α2 − β2
X1f1 =

2β
1− α2 − β2

X2f1 +X2f2.(3.5)

By using the isometry (3.2) we get

Jσ

(
X1f1

X2f1

)
=
(

0 −1
1 0

)( (1−α)2+β2

1−α2−β2
−2β

1−α2−β2

−2β
1−α2−β2

(1+α)2+β2

1−α2−β2

)(
X1f1

X2f1

)

=

(
2β

1−α2−β2X1f1 − (1+α)2+β2

1−α2−β2 X2f1

(1−α)2+β2

1−α2−β2 X1f1 − 2β
1−α2−β2X2f1

)
=
(
X1f2

X2f2

)
,

where the last identity follows from (3.4) and (3.5). Hence we have the relation

(3.6) ∇Hf2 = Jσ∇Hf1.

By using (3.1) we obtain

(3.7) ∇Hf1 = −Jσ∇Hf2.

By combining (3.1), (3.7) and (3.6) we can equally well write
σ∇Hf1 = −J∇Hf2,

σ∇Hf2 = J∇Hf1.
(3.8)

Assuming F ∈ C2
H we may take the horizontal divergence of the previous equations to get

∇H · σ∇Hf1 = −∇H · J∇Hf2 = −4Tf2,

∇H · σ∇Hf2 = ∇H · J∇Hf1 = 4Tf1.
(3.9)

If the dilatation µ depends only on the first two coordinates of H, µ = µ(z), and if F ∈
C3

H(U), then we can apply the operator σ∇H to find

σ∇H(∇H · σ∇H)f1 = −σ∇H(4Tf2) = −4T (σ∇Hf2) = −4T (J∇Hf1)

and similarly for f2. Applying the same argument starting from the second Beltrami equa-
tion ZfII = µZfII yields a similar conclusion for f3 and f4. We proved

Proposition 3.1. Let F = (f1, f2, f3) be a C3
H quasiregular map of a domain U ⊂ H, whose

complex dilatation µ depends only on the z-coordinate. Define f4 = |fI |2 = f2
1 + f2

2 . Then

(3.10)
(
σ∇H(∇H · σ∇H) + 4J∇HT

)
fj = 0, j = 1, 2, 3, 4,

where σ is defined in terms of µ by (3.2).
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Equation (3.10) is called the conductivity equation associated to the matrix σ. Note that it
is third-order in horizontal partial derivatives. As we will see shortly, (3.10) can be stated
using the horizontal curl operator. If F ∈ C4

H(U) we can take the horizontal divergence of
the expression on the left hand side in (3.10) to derive the following fourth-order equation:

(3.11)
(

(∇H · σ∇H)2 + 16T 2

)
fj = 0, j = 1, 2, 3, 4.

For instance, 1-quasiregular maps of H have components which satisfy (2.2) with µ = 0 or
equivalently, satisfy (3.9) with σ = Id2. Such components satisfy the fourth order equation

(3.12)
(
L2

H + 16T 2

)
fj = 0, j = 1, 2, 3, 4,

where LH = ∇H ·∇H = X2
1 +X2

2 denotes the Kohn sub-Laplacian on H. Note that Liouville–
Gehring–Reshetnyak rigidity holds for 1-quasiregular maps on the Heisenberg group; every
such map defined on a domain U ⊂ H is the restriction to U of a Möbius transformation of
the Heisenberg group (which in turn corresponds to the action of an element of SU(2, 1) on
the compactified Heisenberg group). In particular, such maps are smooth. This was shown
for C4 maps by Korányi and Reimann [11] and later by Capogna [4] without the regularity
assumption.

Remark 3.2. We note also that the operator on the left hand side of the equation (3.11)
factors into a pair of second order operators

(∇H · σ∇H)2 + 16T 2 = 16�σ,1�σ,−1,

where
�σ,α = −1

4
∇H · σ∇H + iαT.

Solvability of the operator �S,α for complex symplectic matrices S on the Heisenberg group
Hn was studied by Müller, Peloso and Ricci in [14]. The operators �σ,1 and �σ,−1 are
both not solvable. The case σ = Id2 coincides with Folland-Stein operators, see [7] or [17,
Chapter XIII.2.2].

Now let us assume that µ depends on all of the coordinates of H, i.e., µ = µ(z, x3). Then
Tµ, hence also Tσ, will no longer vanish. In this case the components of F will satisfy a
more complicated conductivity equation involving additional terms.

We return to (3.9) and again apply σ∇H to the first equation in (3.9) to obtain

σ∇H
(
∇H · σ∇Hf1

)
= σ∇H

(
−4Tf2

)
= −4T

(
σ∇Hf2

)
+ 4(Tσ)∇Hf2

= −4TJ∇Hf1 + 4(Tσ)Jσ∇Hf1

= −4JT∇Hf1 − 4σJ(Tσ)∇Hf1.

(3.13)

In the last line we used the identity (Tσ)Jσ + σJ(Tσ) = 0 which comes from applying the
operator T to the identity

(3.14) σJσ = J.

Rearranging (3.13) and using (3.14) yields

JσT∇Hf1 + J(Tσ)∇Hf1 + 1
4∇H

(
∇H · σ∇Hf1

)
= 0

or
JT
(
Jσ∇Hf1

)
+ 1

4J∇H
(
∇H · σ∇Hf1

)
= 0.
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In view of (2.10) and repeating the argument for f2, f3, f4 we arrive at the following con-
clusion.

Theorem 3.3. Let F = (f1, f2, f3) be a C3
H quasiregular map of a domain U ⊂ H with

complex dilatation µ = µ(z, x3). Define f4 = |fI |2 = f2
1 + f2

2 . Then

(3.15) ∇H ×
(
Jσ∇Hfj

)
= 0, j = 1, 2, 3, 4,

where σ is defined in terms of µ by (3.2).

The vector field
Xσ
u :=

1
4
Jσ∇Hu

is the unique vector field satisfying condition

(σXσ
u )ydτ = −dHu

for u ∈ W 1,p(U), U ∈ H. The case σ = Id2 corresponds the condition (2.17) for the
symplectic gradient. It is tempting to call Xσ

u the σ-symplectic gradient of u. We note that
due to (3.14), Jσ is also a skew-involution, that is, (Jσ)2 = − Id2 holds.

Note that when the complex dilatation µ satisfies the bound (2.3), then σ verifies the
ellipticity bounds

K−1|ξ|2 ≤ 〈σξ, ξ〉p ≤ K|ξ|2, for every ξ ∈ span{X1, X2}(p),
where K and k are related by (2.4). Here 〈·, ·〉p is the standard inner product in the
horizontal tangent plane span{X1, X2}(p), p ∈ H.

One can formulate the conductivity equation (3.15) also in terms of horizontal differential
forms introduced in section 2.2. We get

(3.16) dc(Jσdcu) = 0,

where the function u ∈ C3
H(U) is a solution of (3.15) and the conductivity σ is as in Theorem

3.3. By utilizing the adjoint operator δc : E2
0 → E1

0 in (2.15) we get an equivalent equation

(3.17) δc(σdcu ∧ τ) = 0,

since
dc(JσdHu) = ∗δc(∗J)(σdcu) = − ∗ δc(σdcu ∧ τ),

where equation (2.16) is also used.
Equation (3.17) allows us to formulate a weak version of the conductivity equation.

Definition 3.4. A function u ∈ W 1,p
H,loc(U) is a weak solution of the conductivity equation

(3.17) if for every ϕ = ϕ1dx1 + ϕ2dx2 ∈ E1
0 with ϕi ∈ C∞0 (U)

(3.18)
∫
U
〈σdcu ∧ τ,dcϕ〉p dp = 0

holds. Above 〈·, ·〉· denotes the natural inner product in the space of horizontal two forms
E2

0 . The underlying measure is the three dimensional Lebesgue measure which agrees with
Haar measure in the group H.

We can now formulate the weak version of Theorem 3.3.

Theorem 3.5. Let F = (f1, f2, f3) be a W 1,4
H,loc(U) quasiregular map of a domain U ⊂ H

with complex dilatation µ = µ(z, x3). Define f4 = |fI |2 = f2
1 + f2

2 . Then, for each j =
1, 2, 3, 4, the function u = fj is a weak solution of the conductivity equation.
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Suppose now that u ∈ W 1,4
H (U) is a weak solution of the conductivity equation (3.18).

Mimicking the electrostatistic analogy in the plane, we define a div-curl couple F = [E,B]
by setting

E = dcu ∈ E1
0 ,

B = σdcu ∧ τ ∈ E2
0 .

(3.19)

Since d2
c = 0 holds in the horizontal complex (E∗0 , dc) we immediately get that dcE = 0

holds and E is a curl free vector field. For a general horizontal vector field V one can define
(see [9]) an intrinsic divergence operator DivH by setting

DivH V := ∗δcV [,

where δc : E1
0 → E0

0 acts on 1-forms via δc = −∗dc∗. Then the vector field B plays the role
of a divergence free vector field, since δcB = 0 holds.

One can further introduce quantities

|F|2 = |E|2 + |B|2 = |E ∧ τ |2 + |B|2

and
JF = 〈E ∧ τ,B〉

and call a div-curl couple F = [B,E] that satisfies the distortion equality

|F|2 ≤
(
K +

1
K

)
JF

a K-quasiconformal field in the Heisenberg group. This terminology is analogous to the
plane case [1, Chapter 16.1.6] where it arises in connection with the Hodge ∗ method. In
classical electrodynamics E and JB give rise to Faraday’s form as introduced in [9]. We
will return to this facinating connection elsewhere.

Remark 3.6. In the planar case, both divergence∇·V = ∂V1
∂x1

+ ∂V2
∂x2

and curl∇×V = ∂V1
∂x2
− ∂V2
∂x1

are scalar functions acting on a vector field V = (V1, V2). They are related by the Hodge ∗
operator which acts on vector fields by multiplication by the matrix J . Thus, on a planar
domain U the conductivity equation can be formulated either in divergence form:

(3.20) ∇ · (σ(z)∇u) = 0

or in terms of the curl:

(3.21) ∇× (Jσ(z)∇u) = 0.

Due to the Poincaré lemma, if u ∈ W 1,1
loc (U) is a solution to (3.21) then there exists v ∈

W 1,1
loc (U) with ∇v = Jσ(z)∇u. In this case B = σ∇u is divergence free (see (3.20)) while

E = ∇u is curl free. The pair [B,E] is termed a div-curl couple.
In the Heisenberg case this duality between divergence and curl is no longer present in the

same form. The horizontal divergence is a scalar valued operator, while the horizontal curl
is a vector valued operator. We have formulated the Heisenberg conductivity equation first
in terms of the horizontal curl operator in (3.15), then equivalently in terms of horizontal
differential forms and the horizontal exterior derivative acting on 1-forms in (3.16), and
finally in terms of the horizontal adjoint operator acting on horizontal 2-forms in (3.17). It
is the adjoint operator that can be related to the divergence operator. It is in this sense
clear what the notion of div-curl couple means in this setting.
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Additional tools are available in the planar case, namely, Stoilow factorization and the
measurable Riemann mapping theorem. Every solution to a conductivity equation with
strongly elliptic conductivity matrix can be written as the composition of a harmonic func-
tion and a quasiconformal mapping, see Theorem 16.1.4 in [1] for details. There is no
obvious parallel to this result in the Heisenberg case.

4. Conductivity solutions generate quasiregular maps

We now reverse the process described in the previous section. Starting from a solution to
the conductivity equation (3.15), subject to a compatibility assumption (4.5), we generate
a quasiregular map between domains in H.

Let us fix a measurable conductivity matrix function σ : U → S(2) defined on a simply
connected domain U ⊂ H and satisfying the ellipticity bound

(4.1)
1
K
|ξ|2 ≤ 〈σξ, ξ〉 ≤ K|ξ|2, ξ ∈ span{X1, X2}

for some K ≥ 1. By considering the action of σ on an orthonormal eigenbasis it is easy to
see that the two-sided estimate in (4.1) can be written as a single inequality:

(4.2) |ξ|2 + |σξ|2 ≤
(
K +

1
K

)
〈σξ, ξ〉, ξ ∈ span{X1, X2}.

Let u = f ∈ C3
H(U) be a solution to the conductivity equation

(4.3) ∇H ×
(
Jσ∇Hu

)
= 0.

By Theorem 2.4(b) there exists g ∈ C3
H(U) so that Jσ∇Hf = ∇Hg in U . Then, since

Jσ∇Hg = (Jσ)2∇Hf = −∇Hf

holds, u = g is also a solution to (4.3) and (3.8) holds for the pair (f, g), i.e.,

σ∇Hf = −J∇Hg,

σ∇Hg = J∇Hf.
(4.4)

Theorem 4.1. Let σ be a conductivity matrix on a simply connected domain U ⊂ H and
assume that σ satisfies the ellipticity bound (4.1). Let f ∈ C3

H(U) solve (4.3) and let g be
the conjugate function as described above. If

(4.5) u := f2 + g2 satisfies the conductivity equation (4.3),

then there exists h ∈ C3
H(U) so that F = (f, g, h) is a K-quasiregular map of U .

Proof. The first step of the proof is to construct the third coordinate function h and verify
the contact condition

(4.6) ∇Hh+ 2f∇Hg − 2g∇Hf = 0.

To do this, we will take advantage of Theorem 2.4(b). It suffices to verify that the vector
field f∇Hg − g∇Hf has vanishing horizontal curl.

Since u = f2 + g2 also satisfies the conductivity equation we know that

∇H × (fJσ∇Hf + gJσ∇Hg) = 0.

Using system (4.4) on the left hand side of the above equation yields

∇H × (f∇Hg − g∇Hf) = 0
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as desired. By Theorem 2.4(b) there exists h so that (4.6) is satisfied. In other words, the
map F = (f, g, h) is a generalized contact map. To see that h ∈ C3

H it suffices to observe
that f∇Hg − g∇Hf ∈ C2

H(U). Let us also remark in passing that the pair of functions h
and u = f2 + g2 satisfies the system (4.4) for the same conductivity matrix σ.

It remains to verify the dilatation bound (2.1). Using the identity

||A||2 = 1
2 ||A||

2
HS +

√
1
4 ||A||

4
HS − det2A

valid for 2× 2 matrices A, where ||A|| denotes the operator norm of A and ||A||HS denotes
the Hilbert–Schmidt norm, we observe that it suffices to show

(4.7) ||DHF ||2HS ≤
(
K +

1
K

)
detDHF a.e. in U .

Since ||DHF ||2HS = |∇Hf |2 + |∇Hg|2 and detDHF = 〈∇Hg, J∇Hf〉, (4.7) can be rewritten

(4.8) |∇Hf |2 + |∇Hg|2 ≤
(
K +

1
K

)
〈∇Hg, J∇Hf〉 a.e. in U .

We use the system (4.4) to rewrite (4.8) in terms of a single component f as follows:

|∇Hf |2 + |σ∇Hf |2 ≤
(
K +

1
K

)
〈∇Hf, σ∇Hf〉 a.e. in U .

This is precisely (4.2). Hence F is K-quasiregular. �

The above theorem also has a corresponding weak formulation.

Theorem 4.2. Let σ be a conductivity matrix on a simply connected domain U ⊂ H and
assume that σ satisfies the ellipticity bound (4.1). Let f ∈ W 1,4

H,loc(U) be a continuous
solution to (3.18) and let g ∈ W 1,4

H,loc(U) be its conjugate function. If u := f2 + g2 satisfies
(3.18), then there exists h ∈W 1,4

H,loc(U) so that F = (f, g, h) is a K-quasiregular map of U .

Proof. Below we write down the places where the weak formulation is used. Quasiregularity
for F follows as in the previous theorem.

Since f solves (3.18) we also find g ∈ W 1,4
H,loc(U) so that Jσdcf = dcg in the sense of

distributions and furthermore, both Jdcf = σJσdcf = σdcg and −σdcf = Jdcg hold.
For every ϕ = ϕ1dx1 + ϕ2dx2 ∈ E1

0 with ϕi ∈ C∞0 (U) we now get∫
U
〈σdcg ∧ τ,dcϕ〉p dp =

∫
U
〈(Jdcf) ∧ τ,dcϕ〉p dp

= −
∫
U
〈(∗J)(Jdcf) ∧ τ,dcϕ〉p dp =

∫
U
〈∗dcf, dcϕ〉p dp

= −
∫
U
〈∗dcf, ∗δc ∗ ϕ〉p dp =

∫
U
〈dcf, δc ∗ ϕ〉p dp = 0.

Above in the second line we used (2.16). It hence follows that g is a solution to (3.18).
To find the third function h ∈W 1,4

H,loc(U) it is now enough to show that

(4.9)
∫
U
〈(Jfdcg − Jgdcf) ∧ τ,dcϕ〉p dp = 0,
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since for α ∈ E1
0 the condition dcα = 0 is equivalent to the condition δc(Jα ∧ τ) = 0. From

the assumption that u = f2 + g2 solves (3.18) we get∫
U
〈(Jfdcg − Jgdcf) ∧ τ,dcϕ〉p dp =

∫
U
〈(fJdcg − gJdcf) ∧ τ,dcϕ〉p dp

= −
∫
U
〈σ(fdcf + gdcg) ∧ τ,dcϕ〉p dp

= −1
2

∫
U
〈σdcu ∧ τ,dcϕ〉p dp = 0.

We obtain functions f , g and h so that the triple F = (f, g, h) is a generalized contact
map of H which satisfies the distortion inequality (2.1). By Theorem 2.2, F is continuous.
Hence F is a quasiregular map. As previously mentioned, the K-quasiregularity of F follows
exactly as in the proof of Theorem 4.1. �
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