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Abstract
Radio frequency radar indoors is gaining traction owing to
its promise for extended coverage and device-free opera-
tion. However, while the well-behaved radar sensing model
affords clear advantages, the cluttered indoor environment
presents numerous challenges for reliable human sensing.
Classic radar techniques are hard to call upon since the
kinematic and clutter behaviours in aerospace are vastly
different from their indoor counterparts. We demonstrate
the peculiarities of indoor radar using a commercial 2D ar-
ray commodity device in the 6 to 8.5 GHz band. We then
present a set of processing tools suited for indoor radar hu-
man sensing. We show that excessive indoor clutter and er-
ratic human kinematics can be largely mitigated building on
such processing tools without resorting to much low-level
techniques unsupported by commercial commodity radars.
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Introduction
Radar sensing is undergoing a renaissance. Emerging
mission-critical applications, spearheaded by the autonomous
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vehicle initiative, are driving development across all aspects
radar: from analogue and mixed-signal integrated circuit
(IC) design [7], sophisticated target tracking schemes [8],
to artificial intelligence (AI) aided inference and decision-
making [10].

A recent beneficiary of this renaissance is the indoor en-
vironment. Radar has been repurposed to sense respira-
tion [12], see through-wall a human skeletal figure [1], lo-
calise a small number of co-located people [2], and as far
as detect emotion based on physiological vital signs [16].

Despite novelty, the reported indoor radar use cases achieve
their sensing tasks by a combination of: (1) low-level radar
configuration e.g. a form of frequency sweep coding in [2],
and (2) carefully orchestrated setups e.g. directly facing the
radar in [12, 16] for respectively accurate sleep stage mon-
itoring and emotion recognition. As a result, it would seem
that further open innovation in indoor radar human sensing
is hindered by two barriers:
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Figure 1: Radar sensing system.

Radar accessibility. In the short-term, further innovation
in indoor radar for human sensing requires accessible re-
search platforms. However, many commodity indoor radar
vendors employ propriety architectures and algorithms to
which users have neither the insight nor the low-level con-
figurability. One such vendor we trialled is Walabot [15].
Apart from the high-level parametrisation of the sensing
arena, no provisions for modifying the signalling architec-
tures and algorithms will invariably stifle innovations while
users attempt application-specific customisations. Other
commodity indoor radar vendors such as XeThru do pro-
vide open platforms for development [11]. However, such
platforms demand a certain level of expert knowhow scat-
tered across the radio stack which cannot be assumed on
the part of new entrants into the indoor radar human sens-
ing field.

Environmental robustness. Longer-term, it is desirable to
transition early compelling radar results [16, 3] from the
lab and into the wild. This will in turn fosters the further
innovations needed for the technology to reach the level
of maturity needed for impacting people’s quality of life—
tangibly and on an every day basis. For this to happen, it
is crucial to begin to tackle problems arising from the no-
toriously cluttered indoor environment not only on a low-
level—pertaining to often times inaccessible radar signalling
architectures and algorithms—but also on a high-level for
added resilience against residual environmental noise and
dynamics.

In this paper, we set out to address the short-term radar ac-
cessibility challenge with the view to help foster long-term
future research. To this end, we describe a sensing pipeline
built on commodity indoor radars for human sensing in the
wild. Our methodological stance is to help address envi-
ronmental robustness without low-level radar modifications,
which we believe will make our findings reproducible in a
wider community of new entrants to the field of radar tech-
nology. Our early results show that this approach is able to
tackle some of the complexities of using indoor radar for hu-
man sensing while allowing for avenues of further research.

Radar Primer
In a nutshell, a radar consists of an antenna array as shown
if figure 1. The array scans the environment by using sep-
arate designated transmitter and receiver antennas. Al-
ternatively, antennas belonging to the array may alternate
between transmission and reception. During a scanning
interval, transmitters emit radio energy omnidirectionally.
Transmission energy can also be steered towards a spatial
sector in the environment by making the transmitted pulses
interfere constructively at a given angle, and destructively
at others. Echoes reflect off inanimate obstacles or peo-
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Figure 2: Human sensing using accessible radar.

ple back to the receiving array elements. The round-trip
time-of-flight (TOF) allows for computing the distance to
an object i.e. range. By making use of spatial sampling,
the receiver array is also able to determine the angle at
which reflected echoes arrive back in azimuth and eleva-
tion. Doppler shift can be used to enable the inference of an
object’s velocity with respect to that of the array. As such,
well-behaved radar models make possible the simultaneous
determination of range, velocity, and angle associated with
a given moving object in the sensing environment. Many
radar architectures with various pros and cons exist. Exam-
ples include ultra wideband (UWB), pulse-based signalling
and frequency sweep-based approaches such as frequency
modulation continuous wave (FMCW). Typically, commod-
ity radars are shipped with API’s that give end users ac-
cess to a parametrisable1 detection image corresponding
to the radar’s field-of-view (FOV) response to the unfolding
sensing scene. Commodity radar vendors may also provide
specialised API’s targeted at added functionalities on top of
basic target detection such as respiration or sleep monitor-
ing.

In terms of radar behaviour indoors versus other more es-
tablished media, there are a number of fundamental and
noteworthy differences. For instance, the human body has
a much lower radar cross section (RCS) characteristics2

1see table 1 for instance
2A radar cross section refers to the reflective characteristics of the

material shone with radio energy.

when compared to a metallic vehicle body in automotive
radar [6]. Also, the kinematic behaviour of an automotive
vehicle is constrained largely by physics, which in turn al-
lows for simplifying assumptions such as constant velocity
or constant acceleration motion models [4]. In contrast, it
is unclear if such behaviour can be assumed on the part
of moving people indoors. Many other open questions sur-
rounding an indoor radar operation exist, which presents
avenues for future research.

Human Sensing using Accessible Radar
We next present a sequence of processing steps suited for
isolating and tracking humans from cluttered indoor images
by commodity radar. A high-level block diagram of these
steps in shown in figure 2. In what follows, we explain these
processing stages and the rationale behind them.

(1) Static analysis. This refers to few subblocks which to-
gether make up the static analysis processing. When a per-
son walks into a room and remains stationary in one loca-
tion for a period of time, stronger reflections off indoor re-
flective radio surfaces such as walls and furniture will domi-
nate the sensing scene. We therefore need to employ a se-
ries of transformations in order to isolate the human object
of interest from inanimate targets and background clutter.
To this end, we first apply non-coherent integration (NCI)
to a number of elevation scan planes. The idea here is that
depending on a limb RCS, such as torso and legs, the hu-
man body will be detected with various voxel intensities. For
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Figure 3: Static person facing radar.

example, the radar unit may be positioned such that three
elevation scans would target a person’s head, torso, and
legs. The middle elevation scan hitting the torso is likely
to have the highest voxel intensity. Integrating elevation
planes helps normalise for such behaviour to enhance sen-
sitivity. Second, we apply a constant false alarm (CFAR)
detector [14] across range bin scans in order to derive a
detection mask to coarsely estimate background noise. An
image segmentation algorithm [13] is then applied on the
elevation integrated scene bootstrapped by the CFAR noise
estimate. That is, the CFAR noise estimate adapts the im-
age segmentation algorithm to changing scene dynamics.
The overall output of the processing stage is a segmented
image mask for direct human detection.

(2) Human detection in slow-time. The notion of slow-
time in radar refers to conducting analysis in time across
frames as opposed to within a single scene frame [5]. Slow-
time processing enables target speed determination. In
the context of indoor radar human sensing, slow-time tar-
get phase processing is what allows for vital sign estima-
tion [12, 3].

res limits
range 5cm [0.25, 7]m

azimuth 5◦ ±60◦

elevation 10◦ ±10◦

Table 1: 3D scan parameters
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Figure 4: Test room layout Even after the application of proprietary low-level target
detection algorithms, we make the observation that slow-
time analysis across frames affords us the possibility of

extracting humans targets from inanimate ones. Accord-
ingly, the segmented mask outputted by previous static
analysis stage is used to analyse the phase of targets in
slow-time—possibly after further target centroid estima-
tion [9]. It has been observed in prior art that human pres-
ence causes a target phase to change smoothly and peri-
odically in slow-time compared to that of an inanimate ob-
ject. Therefore, in this stage, static analysis is followed by
a phase search across slow-time for all segmented targets.
The output of this search is a labelling of targets as either
static background-related or human objects of interest for
further tracking.

(3) Dynamic analysis. When humans move indoors, detec-
tion is somewhat simplified since we can employ differential
scene techniques [5]. Additionally, similar image segmen-
tation procedure can be followed. The targets can then be
tracked with a variety of tools ranging from the simplistic,
power-based to the sophisticated. Examples include prob-
abilistic methods such as Kalman-based track initiation and
maintenance variants [4] or neural networks variants [10].

Early Experimental Evaluation
We conduct experiments with a 2D commodity radar that
consists of 24 antenna elements operating in the band 6



to 8.5 GHz. The device is a customised version of the 18-
element “Developer” device by Walabot [15]. Only high-level
parametrisation is exposed to end developers in the form
of crude arena configuration. By means of this arena con-
figuration, we control resolutions and maximum sensing
limits for: range, azimuth, and elevation. Indirectly, the 3D
scanned volume also determines the frame rate since the
radar need to process and stream all voxels to a host com-
puter in a finite time. We configure the 2D radar with the
3D scan parameters shown in table 1. Under such scan
settings, we obtain around 10 measurement frames per
second.

(a) inanimate object

(b) human

Figure 5: Slow-time phase for an
inanimate object and a human.

Turning to human detection, phase analysis in slow-time
is depicted in figure 5. It is readily observed that human
presence causes a target phase to change smoothly and
periodically in slow-time compared to that of an inanimate
object.

We perform an experiment in which one human subject
walks into a room and stands in the middle of it facing the
radar unit. The designated standing zone is highlighted
within the room layout of figure 4 as a diagonal pattern. The
room contains many fixtures not indicated on figure 4 such
as a lamp, plant, table, etc. 3D radar frames with the arena
parameters enumerated in table 1 are recorded and fed to
our proposed human sensing pipeline offline. As shown
in figure 3a, when examining the raw detection image, the
presence of a person in the middle is indiscernible.3 The
output of our pipeline’s series of operations is depicted in
figures 3b and 3c. The human target now appears in the
segmented mask along with a number of false targets from
office fixtures.

Figure 6: Aggregate human target
power levels for moving people
indoors across three occupancy
cases.

3Walabot does provide other API’s for tunable detectors using their
propriety pipelines should users prefer an out-of-the-box experience.

Finally we provide a simple example of dynamic tracking
using a power-based technique for demonstration pur-
poses. We conduct an experiment in the same room in
which up to two people were asked to move continuously
for 5 minutes. In figure 6, we track the aggregate contri-
bution of these human targets for 1 person and 2 people
moving, relative to the noise floor of an empty room. The
periodicity of waveforms 1 and 2 are due to human subjects
moving in circles within the room. When considering the en-
tire test interval, the case of 2 people moving contains more
dynamic target power than 1 person moving. It is worth re-
emphasising that in the case of unmoving human subjects,
slow-time analysis can isolate such stationary presence
which will appear as a constant power offset over that of
the noise floor—discounting false inanimate targets and
as estimated by CFAR. Using these simple power metrics,
classifiers based on static and dynamic analyses allow ap-
plications such as crowd counting and occupancy detection
to be realised atop minimally invasive indoor radar and with
limited or no site-specific calibration subject to application
requirements.

Outlook
In this brief, we showcase how commodity radars can be
used, with minimal insight into underlying technology, to
build a processing pipeline suited for indoor human sens-
ing. The outlined processing steps are accessible to new
entrants to the field and are readily extensible and cus-
tomisable for a variety of sensing tasks. We hope that our
brief treatment serves to provide pointers to others wishing
to conduct research in this newly reinvigorated body of liter-
ature. We expect indoor radar to play a major role in today’s
and future smart environments.



REFERENCES
1. Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi,

and Frédo Durand. 2015a. Capturing the Human
Figure Through a Wall. ACM Trans. Graph. 34, 6,
Article 219 (Oct. 2015), 13 pages.

2. Fadel Adib, Zachary Kabelac, and Dina Katabi. 2015b.
Multi-person Localization via RF Body Reflections. In
Proc. of the 12th USENIX Conf. on Networked Systems
Design and Implementation (NSDI’15). USENIX
Association, Berkeley, CA, USA, 279–292.

3. Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina
Katabi, and Robert C. Miller. 2015c. Smart Homes That
Monitor Breathing and Heart Rate. In Proc. of the 33rd
Annual ACM Conf. on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
837–846.

4. Yaakov Bar-Shalom, Peter K Willett, and Xin Tian.
2011. Tracking and Data Fusion. YBS publishing
Storrs, CT, USA:.

5. Gregory L. Charvat. 2014. Small and Short-Range
Radar Systems (1 ed.). CRC Press, Inc., Boca Raton,
FL, USA.

6. Joaquim Fortuny-Guasch and Jean-Marc Chareau.
2013. Radar Cross Section Measurements of
Pedestrian Dummies and Humans in the 24/77 GHz
Frequency Bands: Establishment of a Reference
Library of RCS Signatures of Pedestrian Dummies in
the Automotive Radar Bands. Technical Report.

7. B. Ginsburg. 2018. F3: Circuits and architectures for
wireless sensing, radar and imaging. In 2018 IEEE Int’l
ISSCC. 508–510.

8. Karl Granstrom, Christian Lundquist, and Omut
Orguner. 2012. Extended target tracking using a
Gaussian-mixture PHD filter. IEEE Trans. Aerospace
Electron. Systems 48, 4 (2012), 3268–3286.

9. Anil Kumar, Yaakov Bar-Shalom, and Eliezer Oron.
1995. Precision tracking based on segmentation with
optimal layering for imaging sensors. IEEE Trans. on
Pattern Analysis and Machine Intelligence 17, 2 (1995),
182–188.

10. Wenjie Luo, Bin Yang, and Raquel Urtasun. 2018. Fast
and Furious: Real Time End-to-End 3D Detection,
Tracking and Motion Forecasting With a Single
Convolutional Net. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 3569–3577.

11. Novelda AS. 2018a. XeThru X4M03 custom sensor
development. (2018). https://www.xethru.com/
xethru-development-platform.html.

12. Novelda AS. 2018b. XeThru X4M200 respiration
sensor. (2018). https:
//www.xethru.com/x4m200-respiration-sensor.html.

13. Eliezer Oron, Anil Kumar, and Yaakov Bar-Shalom.
1993. Precision tracking with segmentation for imaging
sensors. IEEE Trans. on aerospace and electronic
systems 29, 3 (1993), 977–987.

14. Hermann Rohling. 1983. Radar CFAR thresholding in
clutter and multiple target situations. IEEE Trans. on
Aerospace and Electronic Systems 4 (1983), 608–621.

15. Vayyar Imaging Ltd. 2018. Walabot. (2018).
https://walabot.com/makers.

16. Mingmin Zhao, Fadel Adib, and Dina Katabi. 2016.
Emotion Recognition Using Wireless Signals. In Proc.
of the 22Nd Annual Int’l. Conf. on Mobile Computing
and Networking (MobiCom ’16). ACM, New York, NY,
USA, 95–108.

https://www.xethru.com/xethru-development-platform.html
https://www.xethru.com/xethru-development-platform.html
https://www.xethru.com/x4m200-respiration-sensor.html
https://www.xethru.com/x4m200-respiration-sensor.html
https://walabot.com/makers

	Introduction
	Radar Primer
	Human Sensing using Accessible Radar
	Early Experimental Evaluation
	Outlook
	REFERENCES 

