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Abstract

We define the notions of a convex combination of a test configuration, and K-stability over
a base variety.

1 Introduction

The K-stability of a projective variety with the structure of a projective family over a base scheme
is in certain cases conjecturally characterised in terms of two types of simple test configurations.
On the one hand one can look at test configurations which are equivariant with respect to the
projection to the base, and on the other hand one can pull back test configurations from the base.
Partial results are known in the case of toric bundles [2], projective bundles [20], blowups [3, 25, 20]
and flag bundles [?]. We define the notion of relative K-stability, which is a conjectural refinement
of K-stability. Given a projective morphism p : Y → B a relative test configuration is a projective
morphism Y → B × A1, with a Gm-action inducing a test configuration on each fibre of p.

We introduce and study filtrations of graded coherent sheaves of algebras in Section 2 with the
aim of generalising the Witt-Nyström-Székelyhidi theory of filtrations in the study of K-stability
[29, 27] to the context of relative K-stability. We show how this relates to Székelyhidi’s notion of
K-stability (see Remark ??) in Section 3. The motivation for studying filtrations of sheaves is that
it allows us to give a unified treatment of several constructions that have appeared in the theory of
K-stability, as well as constructions which we believe to be new. Related work was done by Ross
and Thomas [21].

In Section 4, we propose an algebraic solution to the problem of interpolating test configura-
tions, which was solved analytically in [23]. This is an application of the constructions defined in
Section 2 and Section 3. Our approach works when the test configurations are defined for different
polarisations as well. As an application, we prove that the K-unstable locus in V(X) is open in
the Euclidean topology. The behaviour of convex transforms as well as further examples of the
interpolation construction are studied in Section 5.

In Section 6, we apply the constructions to give a natural definition of pulling back test config-
urations from the base scheme B. We also give an overview where test configurations of this type
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have appeared in the literature. Finally, we discuss natural filtrations of the coordinate algebras of
flag bundles from the new point of view in Section 7.

Remark 1 (A note on terminology). Throughout this paper, the word relative refers to working
over a base scheme, not to be confused with the stability notion used in the extremal YTD corre-
spondence.

Remark 2. As far as we know, apart from Theorem 26 and Proposition 30 (Theorem ??), our results
are new even when working over SpecC.

2 Filtrations and projective families

By convention, our algebras are Zn≥0-graded. Let B be a scheme over the complex numbers. If A
is a graded sheaf of OB-algebras, we assume that A0 = OB .

Definition 3 (Admissible filtrations). Let

A =

∞⊕
k=0

Ak (1)

be a sheaf of quasicoherent graded OB-algebras over a scheme B. Then an admissible filtration of
A is a filtration of coherent subsheaves

F• : 0 = F−1A ⊂ OB = F0A ⊂ F1A ⊂ · · · ⊂ A, (2)

such that it is

(i) multiplicative, the filtration satisfies the relation (FiA) (FjA) ⊂ Fi+jA,

(ii) homogeneous, if U is an open set in B, the homogeneous parts of any section of FiA(U) are
all in FiA(U), and

(iii) exhaustive, it satisfies
⋃∞
i=0 FiA = A.

Remark 4. The property F0A = OB can be replaced by saying that a filtration

· · · ⊂ FiA ⊂ Fi+1A ⊂ · · · (3)

is discrete, meaning that FjA = OB for some j. Any such filtration can be uniquely reindexed as
an admissible filtration.

There is another equivalent convention for defining an admissible filtration by reversing the order
of the filtration. Codogni and Dervan described the process of translating between the two points
of view in [6] in the nonrelative case. We work with increasing filtration as a matter of convenience
while developing the theory.
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Definition 5. Let FAlgOB
denote the category of pairs (A, F•A) such that

(i) A is a graded coherent OB-algebra, which is locally finitely generated over OB and

(ii) F•A is an admissible filtration.

The morphisms are grading and filtration preserving homomorphisms. We refer to the objects
admissibly filtered graded OB-algebras and often simply refer to them by the symbol F•A.

Definition 6. Let f : A → B be an surjection of graded OB-modules and fi is the restriction of f
to the subsheaf FiA. We define the image filtration (f∗F )• B by

(f∗F )iB = im fi. (4)

Definition 7. Let g : A → B be a morphism of graded filtered OB-algebras and let G•B be a
filtration of B. We define the induced filtration (f∗G)•A by

(f∗G)iA = A ∩GiB = {a ∈ A : f(a) ∈ GiB}. (5)

Remark 8. If f is an isomorphism, these two constructions are clearly inverse to one another, that
is we have identities

f∗f
∗G•A = G•A (6)

and
f∗f∗F•A = F•A. (7)

Definition 9. Let E be a sheaf of OB-modules and let HiA ∈ FAlgOB
. We define the derived

filtration [5], also denoted by H•E , by

HiE = (HiA)E . (8)

Lemma 10. Let f : A → B be a (grading-preserving) morphism of filtered graded sheaves of OB-
algebras. Then the image filtration and induced filtration, when defined, are admissible filtrations
in the sense of Definition 3.

Proof. We verify the conditions in Definition 3 starting with the image filtration. Fix a filtered
algebra F•A ∈ FAlgOB

. To show (i), let si and sj be sections of f∗FiA and f∗FjA over U ⊂ B,
respectively. Then making U smaller if necessary, we have elements ti and tj in FiA(U) and FjA(U),
respectively, such that f(ti) = si and f(tj) = sj . The section titj is in Fi+jA(U), so f(titj) is in
(f∗F )i+jA(U). Homogeneity and exhaustivity follow easily since f preserves the grading and is a
surjective map of sheaves.

The induced case is similar. To check multiplicativity, let si ∈ g∗GiB(U) and sj ∈ g∗GjB(U).
Since G•B is admissible and g is a homomorphism, we have g(sisj) ∈ Gi+jB(U) and hence sisi ∈
g∗Gi+j(U). Homogeneity and exhaustivity are again trivial, since the map g preserves the grading.
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Tensor algebras of filtered modules are naturally endowed with an admissible filtration.

Definition 11 (The tensor algebra of a filtered module). Let

F•E : 0 = F0E ⊂ F1E ⊂ · · · ⊂ FnE = E (9)

be a filtered sheaf of OB-modules. The tensor algebra of E is naturally a filtered algebra by setting

GpT (E) = OB ⊕
∞⊕
k=1

⊕
i1+···+ik=p

Fi1E ⊗ · · · ⊗FikE (10)

for p ∈ Z>0.

Lemma 12. The filtration defined in Equation (10) is admissible.

Proof. Follows directly from the definitions.

Definition 13 (Tensor products of filtered algebras). Let F•A and G•B be filtered sheaves of
graded OB-algebras. Define the tensor product

(F•⊗G•)p (A⊗OB
B) =

⊕
i+j=p

FiA⊗OB
GjB, (11)

which is a filtered Z2-graded sheaf of coherent OB-algebras.

Lemma 14. Tensor products of filtered algebras are commutative and associative.

Definition 15. The Veronese subalgebra A(d) is defined as the subalgebra

A(d) =

∞⊕
k=0

Adk. (12)

Similarly, if C is a ZN≥0-graded sheaf of algebras, define the a = (a1, . . . , aN )-diagonal

Ca =

∞⊕
k=0

C(ka1,...,kan). (13)

Definition 16 (Diagonal subalgebras). Let F•A andG•B be filtered sheaves of gradedOB-algebras.
For any pair (a, b) of nonnegative integers, we define the (a, b)-diagonal product of the two filtered
algebras by (

F•⊗(a,b)G•
)

(A⊗B) = (A⊗OB
B)(a,b) ∩ (F•⊗G•)• (A⊗OB

B) . (14)

We refer to this filtration the (a, b)-diagonal product of two filtered algebras. Define weighted
diagonal products of any finite collections of filtered sheaves of algebras similarly.

Lemma 17. The diagonal product is a well-defined operation on FAlgOB
.
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Proof. This is a straightforward verification.

Definition 18 (Filtrations generated at degree 1). Let F•E be a filtered sheaf of OB-modules and
A a graded sheaf of OB-algebras such that A1 = E . We say that the algebra A is generated at
degree 1 so that there is a surjective morphism

p : S(E)→ A. (15)

Let F•S(E) be the filtration on S(E) induced by the filtration on T (E) defined in Definition 11.
Define the filtration G•A of A generated by F•E to be the image filtration p∗F•A.

Lemma 19. A filtration generated at degree 1 is admissible.

Proof. Follows from Lemma 10 and Lemma 12.

Definition 20. We define the Rees algebra and the associated graded algebra of F•A as

(i) Rees(F•A) = ⊕i≥0(FiA)ti ⊂ A[t],

(ii) gr(F•A) = ⊕i≥0(FiA)/(Fi−1A),

respectively. We say that a filtration F•A is finitely generated if Rees(F•A) is locally finitely
generated as an OB-algebra. Note that both objects are bigraded. We refer to the two gradings by
the A-grading and the t-grading.

Lemma 21. Let f : A → B be a morphism of graded sheaves of OB-algebras. The tensor product
preserves finite generation of admissible filtrations. If we assume the homomorphism f is surjective,
the same is true for the image filtration. Similarly, if the homomorphism f is injective, the induced
filtration is finitely generated.

Proof. This can be easily seen by relating the Rees algebras. Let F• and G• be filtrations for A and
B, respectively, and f : A → B is a map preserving the grading. Then we have natural morphisms

Rees(F•A)→ Rees(f∗F•B) (16)

and
Rees(f∗G•A)→ Rees(G•B) (17)

which preserve the grading. The claims for pushforwards and pullbacks then follow easily. Note
that we must assume that f is a surjection in the pushforward case. In the tensor product case we
have a natural isomorphism

Rees (F•A⊗OB
G•B) ∼= Rees(F•A)⊗C[t]Rees(G•B) ⊂ (A⊗B) [t] (18)

which immediately implies the claim.

Remark 22 (Filtrations of coordinate rings). Let (B,L) be a projective scheme and denote R =⊕∞
k=1H

0(B,Lk). Definition 3 contains the special case of admissible filtrations as defined [27] in
of R by taking the base to be a point.
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3 Relative K-stability

In this section we define relative test configurations and describe their relationship to admissible
filtrations discussed in Section 2.

Fix a projective scheme B of dimension b with an ample line bundle L and a locally finitely gen-
erated graded sheaf of OB-algebras A. Denote the relative projectivisation of A by Y = ProjB(A)

with the projection p : Y → B. We assume that A is locally finitely generated at degree 1, which
means that there exists a surjective homomorphism

S(A1)→ A (19)

and hence an embedding
ProjB A → PA1. (20)

Definition 23. Define the graded algebra of sections of L by

RL =

∞⊕
k=0

H0(B,Lk) (21)

and the associated graded sheaf of algebras by

RL =

∞⊕
k=0

Lk. (22)

Proposition 24. The Rees algebra of a graded sheaf of coherent OX-algebras

Rees(F•A) =

∞⊕
k=0

FkAtk (23)

is a flat sheaf of graded OA1-algebras.

Proof. The claim is local on B. The Rees algebra of a k[t]-module is torsion free as a k[t]-algebra.
A well known flatness criterion states that a module over a principal ideal domain is flat if and only
if it is torsion free [9, Section 6.3].

We say that A is ample if the O(d)-line bundle on Y defines an embedding for some positive
integer d. If this is true for d = 1, A is very ample.

Definition 25. Let Y be a scheme, p : Y → B a projective morphism and L a p-ample line bundle.
A relative test configuration, or p-test configuration (Y ,L , ρ) for the pair (Y,L) is defined by

• a flat morphism f : Y → A1 which factors through B × A1, along with an isomorphism
ϕt : f−1{1} ∼= Y ,

• an f -ample line bundle L on Y such that Lt such that the isomorphism over the fibre f−1{1}
identifies the line bundles L1 and L.
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• an algebraic action ρ : Gm × Y → Y which makes the projection to B × A1 equivariant
with respect to the trivial action on B and the standard action on A1, together with a L -
linearisation action on Y that covers the usual action on A1.

The integer r is called the exponent of the p-test configuration. The fibre f−1{0} is called the
central fibre. If L is ample, a p-test configuration is a test configuration in the sense of Definition
??, in which case we say that Y is an ample p-test configuration.

Theorem 26. A finitely generated admissible filtration F•A determines a p-test configuration(
ProjB×A1 Rees F•A,O(1)

)
(24)

with its natural Gm-action. Conversely, a p-relative test configuration (Y ′,L ) of ProjB A deter-
mines a finitely generated admissible filtration G•A.

Proof. Let the group Gm act with its natural action on the line A1 and extend it trivially to the
product B × A1. There is a natural linearisation of this action on the sheaf Rees F•A with the
following local description. Let U be an open set in B such that the projection p

∣∣
U
corresponds to

a graded A0-algebra A, where A0 is the coordinate ring of B over U . The filtration F•A restricts
to an admissible filtration F•A. Then we have a commutative diagram

ReesF•A ReesF•A[s±1]

A0[t] A0[t, s±1]

t 7→s−1t

t 7→s−1t

with obvious notation. This defines a Gm-linearisation on A over U compatible with the grad-
ing. The morphisms pU glue as U ranges over an open cover of B to determine a Gm-scheme
(ProjB×A1 Rees F•A,O(1)) with an equivariant projection down to B ×A1. The projection to A1

is flat by Proposition 24 and the central fibre is isomorphic to

ProjB gr(F•A) (25)

with a Gm-action defined by the t-grading.
Given a p-test configuration (Y ,L ), we produce an admissible filtration as follows. By replacing

L with a power if necessary, we may assume that we have an embedding

ι : Y −→ Pg∗L , (26)

where g is the projection Y → B × A1. Using the identification (Y1,L
∣∣
B×{1})

∼= (Y,L) we obtain
a natural map

h : A −→
∞⊕
k=0

g∗

(
L
∣∣
B×{1}

)⊗ k
, (27)
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which we may take to be an isomorphism by [24, Lemma 29.14.4].
For any sufficiently small affine neighborhood U ∼= SpecA0 ⊂ B, we have a diagram

g−1U ∼= ProjSpecA0
S PSpecA0

S1

SpecA0

ι

g
∣∣∣
U

where S is a graded A0-algebra. Since the projection g is equivariant for the trivial action on U ,
the linearisation of the G-action determines a representation on A1. This determines a splitting
A1 =

⊕r
i=1Wi by weight. We obtain a presheaf of filtered OB-modules as U ranges over sufficiently

small affine open sets of B. The associated sheaf generates an admissible filtration G•A of A by
Lemma 19.

Remark 27. If B = SpecC, this theorem was proved by [27].
If X = Y = B, L is an ample line bundle on X and p is the identity morphism, this theorem

reduces to the blowing up formalism due to Mumford [16], Ross and Thomas [21] and Odaka [17].
Up to passing to a Veronese subalgebra, any finitely generated admissible filtration of the algebra
RL can be obtained from a filtration

I1 ⊂ · · · ⊂ IN ⊂ OX . (28)

See Remark 34 for an outline of this construction.

Given an admissible filtration FiA we define the associated Hilbert, weight and trace squared
functions by

h(k) =

∞∑
i=1

χ

(
B,

FiAk
Fi−1Ak

)

w(k) =

∞∑
i=1

−iχ
(
B,

FiAk
Fi−1Ak

)
and

d(k) =
∞∑
i=1

i2χ

(
B,

FiAk
Fi−1Ak

)
,

respectively. If the p-test configuration given by Theorem 26 is ample, the functions h(k), w(k) and
d(k) are equal to the functions defined in Lemma ??. In this case the Donaldson-Futaki invariant
is defined normally by Equation (??).

Definition 28 (Relative K-stability). Let TestB(Y, L) be the set of p-test configurations of (Y, L).
We define K-stability relative to p in the same way we defined K-stability in Definition ?? but by
restricting the set of test configurations to ones which lie in TestB(Y,L).
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Definition 29. Consider the equivalence relation on the set of p-test configurations generated by
the following three relations.

(i) Identify a p-test configuration Y with any test configuration with which it is Gm-equivariantly
isomorphic.

(ii) Identify any rescaling of the Gm-action on (Y ,L ) (pullback by a cover of A1, cf. Remark
??).

(iii) Identify any pair (Y ,L ) and (Y ,L d) of p-test configurations for all d > 1.

Following Odaka [18] we call equivalence classes under the above identifications p-test classes for
test configurations. Test configurations up to the first two relations are called p-test degenerations.
Note that we will use the same terminology for arbitrary filtrations later, see Definition 36.

Proposition 30 (Theorem ??). The two constructions in Theorem 26 induce a 1-1 correspondence
between finitely generated filtrations of A up to isomorphism and Veronese subalgebras, and p-test
classes of (Y,L).

Proof. It suffices to show that the two constructions are inverses to one another up to the stated
identifications.

An automorphism ϕ of a filtered algebra F•A induces an automorphism of the Rees algebra, and
hence of its projectivisation. Conversely, any equivariant isomorphism which preserves linearisations
clearly produces an automorphism of the filtered algebra.

Similarly, the admissibility criterion uniquely fixes the scale of the action, while the final iden-
tification corresponds to identifying Veronese subalgebras of F•A. This completes the proof.

We extend the notion of ampleness to admissible filtrations through ampleness of their finitely
generated approximations.

Definition 31 (Ampleness for filtrations). Let F•A be the filtered algebra and define the filtrations
F

(k)
• A for all k ∈ N to be the filtrations of A(k) generated by the filtration F•Ak. We say that an

element of FAlgOB
is ample if the sequence of filtrations F (k)

• A determine p-ample test configurations
for all k ∈ N.

Definition 32. For any line bundle A on B, define the twisted polarisation

L(A) = L⊗ p∗A. (29)

We abuse notation by denoting the twisted polarisation on any test configuration of Y similarly.

Lemma 33. Let (Y ,L ) be a p-test configuration for (Y, L) and let L be an ample line bundle on
B. Then (Y ,L (Lm)) is ample for m� 0.
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Proof. It suffices to check ampleness over the central fibre B × {0}, over which the line bundle
L (Lm) restricts to F(Lm) for some relatively ample line bundle F by construction. This is ample
by [11, Proposition II.7.10].

We close the section on a brief discussion of slope stability which provides a case where amplitude
has been studied in detail in Ross and Thomas [20].

Remark 34 (Slope stability). Let ι : B′ ⊂ B is a subscheme. We define a filtration of R by vanishing
orders along B′. Denote the ideal sheaf of B′ by IB′ and consider the filtration

G•L
a : I bLa ⊂ I b−1La ⊂ · · ·ILa ⊂ La (30)

for any pair of natural numbers a and b. Assume from now on that a and b are coprime. The tensor
algebra generated by G•La (cf. Definition 18) is admissibly filtered by Lemma 12.

For example, if a = b = 1 we write

OB ⊂ IL⊕I 2L2 ⊕I 3L3 ⊕I 4L4 ⊕ · · ·

⊂ L⊕IL2 ⊕I 2L3 ⊕I 3L4 ⊕ · · ·

⊂ L⊕ L2 ⊕IL3 ⊕I 2L4 ⊕ · · ·
...

...
...

⊂ R = L⊕ L2 ⊕ L3 ⊕ L4 ⊕ · · · .

It is easy to pick out the filtration from the increasing sequence of upper triangular subsets starting
from the top left corner starting with

OB ⊂ (OB ⊕IL) ⊂
(
OB ⊕ L⊕I 2L2

)
⊂ · · · . (31)

We denote the associated p-test configuration by Xc for c = a
b . If we assume that c ≤ Sesh(B′, L),

where
Sesh(B′, L) = sup {c ∈ Q>0 : Lr ⊗I cr

B′ is globally generated for r � 0} , (32)

then the p-test configuration Xc is ample (up to an equivariant contraction in the case c =

Sesh(B′, L)). This fact is due to Ross and Thomas, who also found a beautiful formula for the
Donaldson-Futaki invariant in this case in terms of the slope of the triple (B′, L, c)1 [20].

More complicated filtrations of the structure sheaf also yield admissible filtrations in a similar
manner. Conversely, let F•RL be an admissible filtration which is generated in degree 1. Let N be
the smallest integer such that FNL = L. For any 1 ≤ i ≤ N , we can define the ideal sheaf Ii ⊂ OX
to be the ideal sheaf locally generated by sections of the subsheaf FiL. We obtain a filtration

0 ⊂ I1 ⊂ · · · ⊂ IN ⊂ OX . (33)

An alternative construction of the ideal sheaves Ii, starting with an arbitrary test configuration,
can be found in Odaka [17, Proposition 3.10] or Ross and Thomas [21].

1Proposition ?? is proved using this formula.
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4 Convex combinations of test configurations

The aim of this section is to define a convex structure on equivalence classes of test configurations.
The idea is very simple and is based on Segre products of filtered coordinate algebras. Consider
the following example.

Example 35 (A description of the convex combination of test configurations when the base B
is a point). Let V and W be complex vector spaces and let X be a projective variety with two
embeddings ι1 : X ⊂ P(V ) and ι2 : X ⊂ P(W ). Fix two 1-parameter subgroups of SL(V ) and
SL(W ), which determine actions

α : P(V )×Gm → P(V )

and

β : P(W )×Gm → P(W ),

respectively, and fix two positive integers a and b. Then we have closed immersions

X
∆−→ X ×X → P(SaV ⊗SbW ) (34)

and an associated family

X ×Gm
∆−→ X ×X ×Gm ⊂ P(SaV ⊗SbW )×Gm. (35)

Here the Gm-action on SaV ⊗SbW is induced from α : t 7→ αt and β : t 7→ βt by setting

(α, β)t(v1⊗ · · ·⊗ va⊗w1⊗ · · ·⊗wb) = (αtv1⊗ · · ·⊗αtva⊗βtw1⊗ · · ·⊗βtwb). (36)

We define the weighted product test configuration to be the Zariski closure of the image of the
diagonal in Equation (35). This is clearly a test configuration for (X,La1 ⊗Lb2), where L1 and L2

are the two restrictions of the hyperplane bundle under the embeddings ι1 and ι2, respectively.
We write the resulting test configuration additively as

a[α] + b[β], (37)

where the brackets denote taking the product test configuration associated to the Gm-action under
the respective embeddings of X into projective space. The test class determined by Equation (35)
(cf. Definition 29 and Remark ??) can be written as

(1− t)[α] + t[β], (38)

where the parameter t is taken to be b
a+b .
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From now on, we identify the set of p-test configurations of Y with the set of admissibly filtered
algebras F•A which satisfy ProjB A ∼= Y and whose filtration F•A is finitely generated by Theorem
26. This justifies the following definition, modelled after Odaka [18].

Definition 36 (Test degenerations and test classes). Let p : Y → B be a projective morphism of
normal schemes. Define the set of p-test degenerations of Y to be the set TestB(Y ) of admissibly
filtered elements F•A ∈ FAlgOB

such that ProjB A ∼= Y considered up to isomorphisms.
Also define the set Testp(Y ) of p-test classes by additionally identifying Veronese subalgebras

in Testp(Y ). We have a natural map

Testp(Y ) −→ Testp(Y ). (39)

If we wish to fix a relatively ample line bundle L on Y (respectively, a ray of relatively ample line
bundles), we write Testp(Y,L) (resp. Testp(Y,L)) for elements of Testp(Y ) (resp. Testp(Y )) which
define a test degenerations (resp. test classes) for (Y,L).

We denote TestSpecC(B) = Test(B).

We now state and prove Theorem ??. Let IQ denote the unit interval [0, 1] ∩ Q and let ∆N−1

be the N − 1 dimensional simplex in QN defined by t1 + . . .+ tN = 1 and ti ≥ 0 for i = 1, . . . , N .

Theorem 37 (Convex combinations of test configurations). For any N ∈ Z≥2, there exists a map

ConvN : Testp(Y )N ×∆N−1 −→ Testp(Y ) (40)

satisfying

(i) ConvN (τ, ei) = τi, where ei is the ith unit vector and τ = (τ1, . . . , τN ) are p-test configurations
of (Y,Li),

(ii) ConvN (τ, t) is an element of Testp (Y,Lt), where Lt is the line bundle
∑N
i=1 tiLi, and

(iii) if we take B = SpecC and assume that τi are finitely generated, the Donaldson-Futaki invari-
ant of ConvN (τ, t) is continuous in the second variable.

Theorem 38 (Theorem ??). The K-unstable locus in V(X) (cf. Equation (??)) is open in the
Euclidean topology.

Proof. Fix a basis L1, . . . , LN of the Picard group of X and let L be a K-unstable polarisation. Fix
a test configuration X for (X,L) with negative Donaldson-Futaki invariant. Let t be a point in
INQ , s = 1 −

∑N
i=1 ti and let U be a neighbourhood of 0 in INQ such that (1 − s)L +

∑N
i=1 tiLi is

ample for all t ∈ U .
For any t ∈ U , define the test class [Xt] = (1− s)[X ] +

∑N
i=1 ti[Xi], where Xi are trivial test

configurations for (X,Li). By Theorem 37, there is an open neighbourhood V ⊂ U of 0 such that
DF(Xt) is negative for all t ∈ V . The set V determines an open neighbourhood of L in Amp(X)

of K-unstable polarisations. Since L was an arbitrary K-unstable polarisation, this completes the
proof.
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Remark 39. It makes sense to extend the definition of the Donaldson-Futaki invariant of a weighted
product (1− t)τ1 + tτ2 for irrational values of t by continuity.

For simplicity of exposition we restrict to the case a pairwise convex combination. The proof
of the general case of Theorem 37 follows the same argument with minor adjustments which are
outlined in Remark 45 and Remark 46.

Recall first a basic algebraic fact.

Lemma 40. Let f : S → T be homomorphism of commutative rings and let A and B be T -algebras.
Let AS and BS be the S-algebras determined by the map f . Then there is a natural surjective
homomorphism

g : AS ⊗S BS → A⊗T B. (41)

Proof. The tensor product AS ⊗S BS is a quotient of A⊗ZB by the ideal generated by elements
f(s)a⊗ b − a⊗ f(s)b for s ∈ S, a ∈ A and b ∈ B. This ideal is contained in the ideal of A⊗T B
in A⊗ZB, hence identifying both algebras in Equation (41) as quotients of A⊗ZB yields the
claim.

Lemma 41 ([13, Example 1.2.22]). Let L1 and L2 be ample line bundles on a projective scheme
X. Then the natural map

H0(X,La1)⊗CH
0(X,Lb2) −→ H0(X,La1 ⊗Lb2) (42)

is surjective for a, b� 0.

Corollary 42. Let L1 and L2 be p-ample line bundles on Y . Then the natural map

p∗La1 ⊗OB
p∗Lb2 −→ p∗

(
La1 ⊗OY

Lb2
)

(43)

is surjective for a, b� 0.

Proof. By [11, Corollary 12.9] we may assume that the pushforwards p∗La1 , p∗Lb2 and p∗(La1 ⊗Lb2)

are vector bundles on B. It suffices to check that the map in Equation (43) is surjective on fibres,
which follows from 41.

Let (a, b) be a pair of nonnegative integers and F•A and G•B two elements of FAlgOB
with

chosen isomorphisms
ProjB A ∼= Y and ProjB B ∼= Y. (44)

Write RA and RB for the graded algebras associated to the two Serre line bundles. We have natural
morphisms

A → p∗RA and B → p∗RB. (45)

By [24, Lemma 29.14.4], there exists a k0 > 0 such that the maps in Equation (45) are isomorphisms
in degrees larger than k0. Therefore the map

ϕ : A⊗OB
B −→ p∗RA⊗OB

p∗RB (46)
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is an isomorphism in degrees larger than k0. Using the isomorphisms in Equation (44) and Corollary
42, we obtain a surjective morphism

ϕ : A(a)⊗OB
B(b) −→ p∗

(
(RA)(a)⊗OY

(RB)(b)

)
(47)

for a, b > k0.
We will from now on use a mix of additive and multiplicative notation for both test degenerations

and line bundles.

Definition 43. For any nonnegative integers a and b we define the weighted product of two test
degenerations

a[F•A] + b[G•B] (48)

to be given by the filtration
ϕ∗(F•⊗(ma,mb)G•)(A⊗OB

B), (49)

where ϕ∗ denotes taking the image filtration defined in Definition 6 and m is chosen to be the
smallest integer so that the statement of Corollary 42 and surjectivity of Equation (45) hold.

Theorem 44. If τ1 and τ2 are p-test degenerations for the relatively ample line bundles L1 and
L2, the diagonal product determines a p-test configuration for each polarisation on the line segment
between L1 and L2 in the cone V(Y ) of polarisations (cf. Equation (??)).

Proof. This follows from Lemma 16 and the fact that we have(
ProjB

∞⊕
k=0

p∗
(
Lak1 ⊗Lbk2

)
,O(1)

)
∼=
(
Y,Lak1 ⊗Lbk2

)
. (50)

Remark 45 (Diagonals in finite products of algebras). Diagonal products make sense for products
of three or more elements of FAlgOB

. First of all, Lemma 41 and Corollary 42 generalise to
finite products of line bundles of the form La11 ⊗ · · ·⊗L

aN
N by an easy induction. This avoids the

difficulty of having to make a choice of integer m in the construction of the convex combinations of
test configurations several times.

In particular, if F•A, G•B and H•C are in FAlgOB
, the (a, b, c) diagonal can be written as a

product pairwise diagonals as

F•⊗(a,b)G•⊗(1,c)H• = F•⊗(a,1)⊗G•⊗(b,c)H•

= F•⊗(a,1)⊗H•⊗(c,b)G•,
(51)

where we omit writing the algebra A⊗OB
B⊗OB

C. The products are clearly associative so we have
omitted the parentheses. Verifying Equation (51) only needs to be done at the level of the diagonal
subalgebras, since the filtration on diagonal is simply the restriction of the tensor product filtration.
The two identities generate the natural associativity and commutativity properties of the pairwise
diagonal product in FAlgOB

. The same relations descend to the weighted products in TestB(Y ).
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Remark 46. There are several potentially confusing aspects about the previous definitions. First,
it makes sense to reparametrise the test class represented by aτ + bτ by rational numbers in the
interval IQ. However, convex combinations are not well defined for test classes since the diagonal
product is clearly not invariant under replacing one of the filtered algebras by a Veronese subalgebra

Second, in order to define the filtration associated to the weighted product, we needed to assume
that a and b were sufficiently large in order to make the multiplication maps in Lemma 41 and
Corollary 42 surjective. This can be circumvented by replacing both underlying line bundles by a
common power at the outset.

Third, while our construction gives no way of choosing a unique convex combination in TestB(Y ),
we see no need to do this. We are ultimately interested in test classes. By Remark 45, a convex
combination of multiple elements of TestB(Y ) can be done simultaneously and there is no need
to iterate a pairwise construction. For test degenerations τ = ([F 1A1], . . . , [FNAN ]) and rational
numbers

t = (t1, . . . , tN ) ∈ ∆N−1 ⊂ INQ (52)

we define ConvN (τ, t) to be the test class of the (mt1, . . . ,mtN )-diagonal in the filtered algebra

N⊗
i=1

F•Ai, (53)

where m is a sufficiently large and divisible integer.

We summarise the contents of Remark 45 and Remark 46 in the following proposition.

Proposition 47. Given N elements of TestB(Y ), there is uniquely defined map from IN to the
set of test classes of Y relative to p. This map is naturally fibred over a subset of the set of rays of
p-ample line bundles on Y .

Before proving property (iii) of Theorem 37 we state the following lemmas. Donaldson reduced
the calculation of the total weight to an nonequivariant calculation. See also [22, Section 2.8.1] for
a clear exposition.

Lemma 48. Let X0 be a projective Gm-scheme over the complex numbers with an ample Gm-
linearised line bundle L. Then there exists a polarised scheme (Y,HL) such that the the weight
polynomial is given by

trH0(X0, L
k) = χ(Y,HkL)− χ(X0, L

k). (54)

Dervan proved the following generalisation of Donaldson’s formula.

Lemma 49 ([7, Lemma 2.30 (iv)]). Keep the notation of Lemma 48 and let A be a Gm-linearised
line bundle on X0. The total weight of the Gm-representation on the vector space H0(X0, L

k ⊗A)

is given by

trH0(X0, L
k ⊗A) = trH0(X0, L

k)−
∫
Y

c1(HL)n · c1(HA)

n!
kn +O(kn−1), (55)
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for some line bundle HA on Y.

Corollary 50. Keep the notation of Lemma 48 and let Li be ample Gm-linearised line bundles on
X0 for 1 ≤ i ≤ N . We have an identity

trH0(X0,

N⊗
i=1

Laiki ) = C0(a1, . . . , aN )kn+1 + C1(a1, . . . , aN )kn +O(kn−1). (56)

where C0(a1, . . . aN ) and C1(a1, . . . , aN ) are polynomials in a1, . . . , aN .

Proof. Apply Lemma 49 and Lemma 48 to

L = Lkj and A =

N⊗
i=1,i6=j

Laikj (57)

for j = 1, . . . , N .

Claim 51. Property (iii) of Theorem 37 holds.

Proof. We show that the Donaldson-Futaki invariant is a continuous rational function in t for
t ∈ ∆N−1.

By the Riemann-Roch formula, there exist polynomials c0 and c1 in ai such that

h0(X,
⊗

Laiki ) = c0k
n + c1k

n−1 +O(kn−2). (58)

In particular, there exist positive numbers c0,i such that

c0 =

N∑
i=1

c0,ia
n
i +O(an−1

1 , . . . , an−1
N ), (59)

since Li are all ample.
By Corollary 50, the weight function is similarly a polynomial in the ai. We conclude that the

function

t 7→ DF

(
t1τ1 + · · ·+ tN−1τN−1 + (1−

N−1∑
i=1

ti)τN

)
(60)

is continuous rational function in t ∈ ∆N−1, since the denominator is always positive.

Remark 52. There is an alternative way to see that the Donaldson-Futaki invariant is continuous
which uses an intersection theoretic formula for the Donaldson-Futaki invariant [15, Proposition 6]
which holds for normal test configurations. Assume that L1 and L2 are ample line bundles on X
and F•RL1 and G•RL2 are admissible. The bigraded Proj

Z = ProjA1 Rees F•
(
RL1
⊗C[t]RL2

)
(61)
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with the Serre line bundleO(a, b) is a test configuration for the product (X×X,La1�Lb2). Restricting
Z to the diagonal yields a test configuration Xa,b for (X,La1 ⊗Lb2). The filtration associated to
Xa,b is equal to the filtration

(
F•⊗(a,b)G•

)
(RL1

⊗RL2
) so the two test configurations are Gm-

equivariantly isomorphic.
If we assume that Z is normal, the intersection theoretic formula for the Donaldson-Futaki

invariant [15, p. 225] implies that the Donaldson-Futaki invariant is continuous in t.
The above argument generalises to weighted products of a finite collection of algebras.

We give a very simple example of a family of test configurations on a fixed polarised variety.

Example 53 (A combination of two simple test configurations on a ruled surface). Let F and Q
be very ample line bundles on a curve C of genus g and consider the projective bundle P(F ⊕ Q)

with its O(1)-polarisation. Let α and β be the Gm-actions which scale F and Q, respectively, with
positive weight 1. The two Gm-actions α and β determine filtrations

F ⊂ F ⊕Q (62)

and
Q ⊂ F ⊕Q (63)

and corresponding test configuration YF and YQ for (P(F ⊕ Q),O(1)). The associated filtrations
are discussed in more detail and generality in Section 7.

For any natural numbers a and b we define a test configuration of P(F ⊕Q) by inducing a Gm-
action on P

(
Sa+b(F ⊕Q)

)
and restricting to the image of P(F ⊕Q) under Veronese embedding of

P(F ⊕ Q). The filtration associated to this test configuration is generated by the grading on the
vector bundle Sa+b (F ⊕Q) given in Figure 1.

a+ b

S(a+b)F · · · SbF ⊗SaQ . . . S(a+b)Q

a+ 2b

2a+ b

Figure 1: The t-grading on the OP1-module Sa+b (F ⊕Q).

An elementary summation shows that the Donaldson-Futaki invariant of the test configuration
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aτF + bτQ is given by

DF(aτF + bτQ) =
a3

(a+ b)3
DF(YF ) +

b3

(a+ b)3
DF(YQ)

+
a2b(µF + 1− g) + ab2(µG + 1− g))

2µ2
E(a+ b)3

.

(64)

DF(τF )
t = 1

DF(τQ)

y

y = DF((1− t)τF + tτQ)

Figure 2: The Donaldson-Futaki invariant of (1− t)τF + tτQ plotted against t = b
a+b when µF = 2,

µQ = 1 and g = 2 equals 1
9 (−1 + 6t− 3t2 − t3).

For example, if µF = 2 and µQ = 1, we plot the Donaldson-Futaki invariant for different values
of a and b in Figure 2. The code for repeating the calculation be found in [12, Ruled surface
interpolations].

5 Okounkov bodies and the convex transform of a filtrations

In this section we describe the behaviour of the convex geometry associated to the variation of
filtered linear series coming from the convex structure defined in Section 4. We give a brief review of
Okounkov bodies and the convex transform associated to an admissible filtration. For more details,
we refer to Lazarsfeld-Mustaţǎ [14], Boucksom-Chen [4], Witt-Nyström [29] and Székelyhidi [27].

Let X be a smooth complex projective variety and L a line bundle on X with ring of sections
R =

⊕∞
k=0H

0(X,Lk). Fix a base point p ∈ X and holomorphic coordinates z1, . . . , zn centred
around p. Given f ∈ Rk we may write

f = szr11 · · · zrnn , (65)

for some (r1, . . . , rn) ∈ Zn, where s is a holomorphic function on a neighbourhood of p which does
not vanish at p. We keep the base point and the choice of coordinates fixed throughout the section.

We define a function ν : R→ Qn by setting

ν(f) =
(r1, . . . , rn)

k
(66)

for any such f ∈ Rk.
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Definition 54. Define the Okounkov body of L by ∆(L) = ν(R) ⊂ Rn.

It is well known that ∆(L) is a convex set. Given an admissible filtration F•R, we define

R≤t =

∞⊕
k=0

FbtkcRk. (67)

This determines a closed convex subset ∆(L)≤t = ν(R≤t).

Definition 55. Define the convex transform of F•R to be

G(x) = inf{t : x ∈ ∆(L)≤t}. (68)

If x is rational we have G(x) = inf
{

lev f
deg f : ν(f) = x

}
. The extension to real numbers is obtained

as the pointwise largest function which is lower semicontinuous and agrees with the restriction the
subset ∆(L) ∩Qn.

Suppose now that L1 and L2 are ample line bundles on X. Let F i•RLi
be admissible filtrations

for i = 1, 2 and let Gi : ∆(L)→ R be the convex transforms of the two filtered algebras.
Let a and b be nonnegative integers such that there exists a surjective homomorphism

ψ : S =

∞⊕
k=0

(RL1
)ak ⊗(RL2

)bk −→
∞⊕
k=0

H0(X, (aL1 + bL2)k). (69)

for all k > 0. The ring RaL1+bL2
is naturally filtered by the image of (F 1

• ⊗(a,b) F
2
• )S. The Okounkov

body ∆(aL1 + bL2) is contained in the Minkowski sum a∆(L1) + b∆(L2).
Set

U =
{

(x, v) ∈ R2n :
x

2
+ v ∈ a∆(L1),

x

2
− v ∈ b∆(L2)

}
(70)

and define a real valued function Ĥ : U → R by setting

Ĥa,b(x, v) = aG1(
x+ 2v

2a
) + bG2(

x− 2v

2b
). (71)

Theorem 56. The convex transform Ga,b(x) of the weighted product filtration (F 1
• ⊗(a,b) F

2
• ) (RL1 ⊗RL2)

is equal to the minimiser
Ha,b(x) = minv∈U Ĥa,b(x, v) (72)

restricted to the Okounkov body ∆(aL1 + bL2).

Proof. Let Ga,b(x) be the convex transform of the filtration (F•⊗(a,b)G•)(R⊗S). We must show
that Ha,b(x) = Ga,b(x) for x in

∆(aL1 + bL2) ⊂ a∆(L1) + b∆(L2) (73)
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Let x ∈ ∆(aL1 +bL2)∩Qn and let νi and νa,b denote the convex transforms of F i• and F 1
• ⊗(a,b) F

2
• ,

respectively. We have

Ga,b(x) = inf

{
lev(f)

k
: f ∈ (RaL1+bL2

)k and
νa,b(f)

k
= x

}
= inf

{
lev(g) + lev(h)

k
: g ∈ RakL1

, h ∈ RbkL2
and (ψ ◦ νa,b)(g⊗h) = x

}
≥ inf {aG1(ν1(g)) + bG2(ν2(h)) : g, h as above}

≥ Ha,b(x).

(74)

On the other hand, let ε > 0 and fix y and z such that

Ha,b(x) ≥ aG1(y) + bG2(z)− ε. (75)

There exists k > 0 such that we can find g ∈ (RL1)ak and h ∈ (RL2)bk such that

ν1(g) = y, ν2(h) = z

lev(g)

ak
≤ G1(y) + ε, and

lev(h)

bk
≤ G2(z) + ε,

where νi : RLi
→ ∆(Li) are the two valuations. We have

Ga,b(x) ≤ (lev(g) + lev(h))/k

≤ aG1(y) + bG2(z) + (a+ b)ε by choice of g and h

≤ Ha,b(x) + (a+ b+ 1)ε by choice of y and z.

Letting ε tend to 0 yields
Ga,b(x) ≤ Ha,b(x). (76)

If x is irrational, the value of Ga,b(x) is obtained as the infimum

lim inf
δ→0

{Ga,b(x′) : |x− x′| < δ} . (77)

The same argument works in this case as well, bearing in mind that we may approximate the value
of Ga,b at x by Ga,b(x′) arbitrarily closely since Ga,b(x) is convex and bounded from below.

Remark 57. This result can easily be extended to convex combinations of arbitrary finite collections
of test degenerations of X.

Remark 58. It is convenient to work instead with the Q-line bundle aL1+bL2

a+b and reparametrise the
family of functions H(a,b)(x) as a function

Ht : ∆ ((1− t)L1 + tL2)→ R, (78)
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where t ranges over the unit interval. We go a step further and identify the range of Ht with a
subset of

V (L1, L2) = Conv (∆(L1)× {0},∆(L2)× {1}) ⊂ Rn × [0, 1]. (79)

It would be interesting to know what kind of behaviour the function Ht can exhibit on V (L1, L2).
The variation of Okounkov bodies was studied by Lazarsfeld-Mustaţǎ [14, Section 4].

If X is toric, Okounkov bodies are a particularly powerful tool. The following examples use the
theory of toric varieties. Briefly, the ring of sections of a polarised toric variety (X∆, L) correspond-
ing to a polytope ∆ = ∆(L) ⊂ Rn, where Rn contains a fixed lattice Zn, is given by

R =

∞⊕
k=1

Zn

k
∩∆. (80)

Sections of H0(X,Lk) are identified with points

m/k = (m1/k, . . . ,mn/k) (81)

in the polytope ∆, where mi are integers. Multiplication of two sections x and y under this
identification corresponds to taking their Minkowski average (x+ y)/2 in ∆.

Example 59 (Convex combinations of toric filtrations.). Let X be a toric variety with two line
bundles L1 and L2 with section rings R and S isomorphic to the sets of rational points in ∆(L1)

and ∆(L2), respectively. Let G1 : ∆(L1)→ R and G2 : ∆(L2)→ R be lower semicontinuous convex
functions and define filtrations

F fi Rk = spanC{x ∈ P/k : f(x) ≤ i}, (82)

and
F gi Sk = spanC{β ∈ Q/k : g(β) ≤ i}. (83)

In this case the (a, b)-weighted Minkowski average

P =
a∆(L1) + b∆(L2)

a+ b
, (84)

is precisely the Okounkov body of aL1+bL2

a+b in the appropriate sense for Q-line bundles. The family
of convex transforms

Ga,b : P → R (85)

now characterises the family of test degenerations determined by the weighted product by Don-
aldson’s theory of toric test configurations [8]. Denote Gt =

Ga,b

a+b , where t = b
a+b . Studying the

behaviour ofGt as t changes may be a useful explicit way to study the variation of test configurations
in the weighted product.
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Example 60. Consider two Gm-actions α and β on P1 = ProjC[x, y] such that if (x/y) is a local
coordinate, α scales (x/y) by weight c and β by −d. The filtrations Fα• and F β• defined by α and
β, respectively, have linear convex transforms on the polytope P = Q = [0, 1]. Rational points in
[0, 1] correspond to monomials xpyq by the bijection

xpyq ↔ p/(p+ q). (86)

It is straightforward to check, either from the definitions or by Theorem 56, that the convex trans-
forms of Fα• ,F

β
• and [Fα• ] + [F β• ] are

fα(x) = 1 + cx,

fβ(x) = 1 + d(1− x)

fα⊗ β(x) = max{1 + c(x− 1/2), 1− d(x− 1/2)},

(87)

respectively. Geometrically, the corresponding degeneration splits P1 into two copies of P1 of equal
volume intersecting at a fixed point of the Gm-action. The Gm-actions on the two components are
given by scaling a local coordinate by the integers c and −d, respectively.

Example 61. Keep to the notation of Example 60, except now let c = −d = 1 and consider the
(a, b)-diagonal product of filtrations

(Fα• ⊗(a,b) F
β
• )(C[x, y]⊗C C[x, y]) (88)

for each pair of natural numbers (a, b). The total space of the toric family is, for each pair (a, b),
a degeneration of a rational curve into a pair of intersecting curves of lower degree whose ratio of
volumes is equal to t. As t approaches 0, the limiting convex function corresponds to the vector
field β. This is also the natural limiting object in Test(P1).
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...

P

1/2

1/3
1/4

0

. .
.

Figure 3: The convex functions corresponding to the product a[Fα• ]+b[Gβ• ] in Test(P1) for different
values of t, where we denote t = b/(a+ b).

6 Pullback test configurations

We fix a projective morphism p : Y → B and let L be an ample line bundle on B. In Section 3
we defined test configurations which are fibred over B in a Gm-equivariant way. As a further
application of the constructions of the previous sections, we construct test configurations of Y
which are naturally fibred over a test configuration of B called pullback test configurations.

Let F•RL be an element of Test(B). After replacing L with a power if necessary, we obtain an
admissible filtration of RL, also denoted by F•RL. Let L be a relatively ample line bundle on Y
and define a map

Φ(a,b) : Test(B)→ TestB(Y ) (89)

by letting Φ(F•RL) be the the filtration
∞⊕
k=0

Aak ⊗F•Lbk. (90)

Lemma 62. The map Φ preserves admissible filtrations.

Proof. This is a special case of Lemma 17.

Definition 63. We say that Φ(a,b)(F•RL) is the pullback of F•RL weight (a, b).

Example 64 (Pullbacks of test configurations). Assume that F•RL is a finitely generated admis-
sible filtration and let B be the scheme ProjF•RL. Considering the algebra ReesOB

Φ(a,b)(F•RL)

as a OB-algebra determines a morphism

Y = ProjBReesOB
Φ(a,b)(F•RL) (91)
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such that the diagram
Y B

A1

commutes.

Definition 65. Define the line bundle

La,b = O(a)⊗ p∗Lb (92)

on ProjB A. Alternatively, the line bundle La,b is the Serre line bundle on Proj (A⊗OB
RL)(a,b).

We have already seen in Lemma 33 that given a locally finitely generated p-test degeneration
G•A ∈ TestB(Y ), the relative test configuration

Y = ProjB (A⊗OB
RL)(a,b) (93)

is ample for d � 0. Denote the Serre line bundle on Y by L(a,b). In particular, if a = 1 simply
write L(a,b) = Lb.

We give two examples of a nice phenomenon which happens with pullback test configurations
for adiabatic polarisations. The first example, due to Stoppa [25], was already mentioned in Section
??.

Example 66. Let p : Y → B be a blow up of a zero dimensional subscheme Z and B a test
configuration for (B,L). Let Y be the pullback of B of weight (1,m). Then the Donaldson-Futaki
invariant of the test configuration DF(Y ,Lm) is given by

DF(Y ,Lm) = DF(B)− Cm1−n +O(m−n), (94)

where n is the dimension of B and C is a positive constant.

Similar results were also proved for slope stability by Ross and Thomas [20, Section 5.5], and
later by Stoppa [26, Lemma 3.1].

The second example is due to Ross and Thomas [20, Section 5.4].

Example 67. Let p : Y → B be a projective bundle or a flag bundle and B′ a subscheme of
B. Let Y be a pullback test configuration with weight (1,m) of the slope test configuration of
IB′ ⊂ OB defined in Remark 34 with slope parameter 1. Then the leading term in m ∈ N of the
Donaldson-Futaki invariant of the test configuration DF(Y ,Lm) is given by

DF(Y ,Lm) = DF(B) +O(m−1), (95)

where (B, L) is the test configuration determined by the pullback of B′.
Ross and Thomas presented the calculation in the case of a projective bundle but the flag bundle

case follows verbatim.
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Remark 68. In the following we have various spaces of sections endowed with natural Gm-actions.
For each vector space we wish to have a succinct and obvious notation for the trace function defined
on page ??. Given a vector space V with a natural Gm-action, we write the trace function simply
as trV .

Remark 69. A product of two cscK polarised varieties (X1, L1) and (X2, L2) is cscK with respect
to the product polarisation L1⊗L2. It is our hope that an algebraic proof of the K-stability of the
polarisation L1⊗L2 would be found. The difficulty is having to consider test configurations which
are not pullbacks from either X1 or X2. We believe it should not be necessary to consider these
more complicated test configurations to decide whether (X1 ×X2, L1⊗L2) is K-stable, in contrast
with the example of an unstable product of two curves in [19].

Remark 70 (Toric bundles). There is a simple type of relative test configuration that has appeared
in [1]. Let E be a principal GL(n,C)-bundle over B and consider a torus bundle T in E with
fibre (Gm)×e. Then one may define a fibrewise orbit closure Y of T using the theory of toric
varieties. The theory of toric test configurations developed in [8] generalises to this context and
yields test configurations which intuitively degenerate fibres of the projection Y → B in a uniform
way. The authors of [1] proved partial results about the extremal YTD correspondance for adiabatic
polarisations on toric bundles constructed in this way.

We think of the test configurations defined in [1], which preserve the homotopy type of the
associated principal bundle but degenerate the fibres of p : Y → B, as complementary to the test
configuration defined in [?]. We studied test configurations which changes the homotopy type of
the associated principal GL(n,C)-bundle but preserves the fibres of p.

In light of the previous remarks, we conclude that particularly on adiabatic polarisations of Y ,
there are two natural families of test configurations: ample p-test configurations and pullback test
configurations. A perhaps naive conjecture we wish to make, motivated by known partial results
on blowups, projective bundles, rigid toric bundles blowups and now flag bundles, is that these two
test classes of test degenerations characterise the stability of adiabatic polarisations in the following
sense.

Conjecture 1. Let p : Y → B be a projective morphism with (B,L) a polarised variety and L(a,b)

as in Definition 65. Then there exists an integer b0 > 0 such that the pair (Y,L(a,b)) is K-stable
(K-polystable, K-semistable) for b > b0 if and only if it is K-stable with respect to test configurations
in TestB(Y,L(a,b0)) and pullback test configurations under the projection p with weight (a, b0).

Remark 71 (Some remarks about Conjecture 1). The hypothesis that projective morphism should
be enough to yield the statement may be overenthusiastic as we have only studied very simple
examples (flag bundles in [?] and certain closed immersions in [?]) in this work.

We also conjecture that the Conjecture 1 holds with admissible filtrations and K-stability in
place of test configurations and K-stability.
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Finally, an example in Ross [19] shows that the statement of the conjecture does not hold for
arbitrary polarisations on Y .

7 Natural filtrations of shape algebras

Fix a coherent sheaf E with a subsheaf F on a scheme B, a partition λ with jumps given by r.
Then we define a filtration W•Sλ(E) which is generated by F ⊂ E (cf. Definition 11 and Definition
18). The basic idea goes back to Griffiths, who defined a natural filtration of an exterior power of
a vector bundle [10].

Example 72. The filtration of S(E) generated by F ⊂ E is given by

F ⊂ E ⊕ S2F ⊂ E ⊕ F · E ⊕ S3F

⊂ E ⊕ S2E ⊕ F · S2E ⊕ S4E ⊂ · · · .
(96)

Here we have used the notation F · E to mean tensors in S2E which are in the image of the
symmetrisation map F ⊗E → S2E. Note that the same filtration can be obtained from the filtration
IPF ⊂ OPE using Remark 34.

In general, the subsheaf F ⊂ E generates a filtration

W•Eλ = (W•Sλ(E))1, (97)

which we write in terms of the factors of F and E in the tensor algebra T (E) as

WiEλ = cλ

(
F⊗ i⊗E⊗(l−i)

)
⊗C[Si]×C[Sl−i] C[Sl]. (98)

Here cλ is the Young symmetriser (cf. Definition ??) and C[Si] denotes the group algebra of
the symmetric group, which acts on T (E) by permuting the tensor factors. In other words, the
module WiEλ is generated by tensors with at least i factors are contained in F . The filtration in
Equation (98) is a finite decreasing filtration and a simple change of indexing yields an increasing
filtration which generates an admissible filtration of the algebra Sλ(E). We call this filtration the F-
weight filtration of Sλ(E) and denote it by ŴF• Sλ(E). In contrast, we denote the filtration generated
by the descending filtration of Equation (98) of increasing powers of F by W•FSλ(E).

Remark 73. The test configuration determined by the subsheaf F ⊂ E for flag bundles is not given
by the theory of slope stability as it does in the case of projective bundles Example 72, but by
a more complicated filtration of the structure sheaf OF lr(E) (Remark 27 and Remark 34). This
filtration is obtained from a flag of relative Schubert varieties determined by increasing incidence
conditions with the subsheaf F .
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Example 74 (Computation of the weight function). Consider a direct sum F ⊕ Q of coherent
sheaves on B. We write

Sλ(F ⊕Q)k = (F ⊕Q)kλ =
⊕

|ν|+|µ|=k|λ|

Mkλ
νµFν ⊗Qµ (99)

using the Littlewood-Richardson rule. We have

WiE
kλ =

⊕
|ν|≤i

Mkλ
νµFν ⊗Qµ. (100)

We define the corresponding weight function

w(k) =

∞∑
i=0

i (χ(WiSλ(F ⊕Q)k)− χ(Wi−1Sλ(F ⊕Q)k))

=

∞∑
i=0

i
⊕
|ν|=i

Mkλ
νµFν ⊗Qµ

(101)

This is the weight function which appeared in Lemma ??.

Example 53 generalises to more general flag bundles.

Example 75 (A product of two simple filtrations of a shape algebra). Let E be a vector bundle
isomorphic to a direct sum of subbundles F ⊕ Q. Let A = Sλ(E) be a shape algebra for F lr(E)

with a polarisation Lλ(A). Consider the two filtrations WF
• A and WQ

• A. The filtration

F ⊗Q ⊂ F ⊗E ⊕Q⊗E = S2E (102)

generates the tensor product filtration (WF ⊗(1,1)W
Q)(A⊗OB

A) of the (1, 1)-diagonal of A⊗OB
A

via the projection
α : Sλ(S2E)→ S2λ(E). (103)

The kernel of α is a complicated object which can be described by decomposing the representation
Sλ(S2E) into irreducible representations. The composition of Schur functors is called plethysm [28,
p. 63].
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