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Abstract

We show that the relative flag variety associated to an unstable base variety is K-unstable,
generalising the results of Ross and Thomas.

1 Introduction

Let E be a vector bundle of rank rE on a polarised smooth complex variety (B,L) of dimension b,
and F lr(E) the flag bundle of r-quotients of E with projection p onto B. Also fix an ample line
bundle Lλ(A) = Lλ⊗ p∗A on F lr(E), where λ is in P(r) and A is an ample line bundle on B.

In Section 2 we construct a test configuration (YF ,Lλ(A)) which we conjecture to be sufficient
for detecting the K-instability of the flag bundle (F lr(E),Lλ(A)) assuming that the base B is
stable.

From now on, we assume that λ is in P�(r). Section 4 calculates the Donaldson-Futaki invariant
of YF if we assume the base to be a curve.

Theorem 1. Assume that B is a curve, E is ample and F is a subbundle of E whose degree is
positive. There exists a test configuration YF for (F lr(E),Lλ(A)) such that

DF(YF ,Lλ(A)) = C (µE − µF ) . (1)

for some positive constant C depending on E,F, g and r.

In Section 5 we outline a similar calculation for adiabatic polarisations on a flag bundle over a
base of arbitrary dimension.

Theorem 2. Assume that F is a saturated torsion free subsheaf of E. Let L be an ample line
bundle on B and assume that A = Lm. Then there exists an integer m0 and a test configuration
YF for (F lr(E),Lλ(Lm)) such that for m > m0 the Donaldson-Futaki invariant of YF is given by

DF(YF ,Lλ(Lm)) = C (µE − µF ) 1
m +O( 1

m2 ) (2)

for some positive constant C depending on E,F,B and r.
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These results immediately imply the stability statements of Theorem ?? and Theorem ?? from
Section ??.

Theorem 3 (The K-instability statements of Theorem A). Assume that B is a curve, E is an
ample vector bundle on B and A is ample. If E is slope unstable and λ is in P�(r), then the flag
bundle (F lr(E),Lλ(A)) is K-unstable. If E is not polystable, then the pair (F lr(E),Lλ(A)) is not
K-polystable.

Proof. Fix a destabilising subsheaf F of E with maximal slope. The saturation, which by definition
has a torsion free quotient, also destabilises. Torsion free coherent sheaves on a curve are locally
free, so we may assume that F is a subbundle. In particular E/F is locally free. The claim then
follows from Theorem 1.

To prove the second assertion, let F be a subbundle of E with maximal slope such that µ(F ) =

µ(E) and assume that F is not a direct summand. The scheme YF is smooth, so in particular it
is normal. It follows that the test configuration is almost trivial only if it the total space F lr(E) is
isomorphic to F lr(E) × A1 [11]. The two schemes F lr(E) and F lr(F ⊕ E/F ) are not isomorphic
since it is possible to construct an isomorphism of underlying vector bundles from an isomorphism
of flag bundles which preserves the polarisation. Therefore the bundle F lr(E) is not K-stable.

Theorem 4 (Theorem B). If E is slope unstable and λ is in P�(r), then there exists an m0 such
that the flag variety F lr(E) of r-flags of quotients in E with the polarisation Lλ(Lm) is K-unstable
for m > m0.

Proof. Follows immediately from Theorem 2.

An identical argument to [10, Proposition 5.25] which will not be repeated here shows the
following instability result which is also discussed in Example ??.

Proposition 5. If the base (B,L) is strictly slope unstable in the sense of [10, Definition 3.8],
then there exists an m0 > 0 such that (F lr(E),Lλ(Lm)) is K-slope unstable for m > m0.

2 Simple test configurations on flag bundles

In this section we define the relative test configuration (YF ,Lλ(A)). First, recall the following
standard construction.

Definition 6 (The extension group of a coherent sheaf). Let F and Q be coherent sheaves on B
and let p1 : B × A1 → B be the first projection. An extension of Q by F is a coherent sheaf E ′

together with maps of OB-modules which fit the short exact sequence

0→ F → E ′ → Q→ 0. (3)
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Extensions are parametrised by the vector space V = Ext1(B,Q,F) and there is a universal ex-
tension U on B × V whose fibres are the corresponding extensions E ′. The sheaf U is naturally
C×-equivariant for the scaling action on B × V which acts trivially on B.

Consider the reverse point of view where E is a fixed vector bundle fitting an exact sequence

0→ F → E → Q→ 0. (4)

Remark 7 (Turning off an extension). Let E be a locally free sheaf on B and F a quasicoherent
subsheaf of E with quotient Q. We abuse notation by writing p∗1E as E[t] (we tacitly identify the
algebra C[t] with the associated sheaf on A1), and identify EF as the subsheaf

EF = p∗1F + tp∗1E ⊂ p∗1E = E[t]. (5)

The sheaf EF is naturally isomorphic to the pullback of the universal extension under the inclusion

B × A1 → B × Ext1(B,Q,F). (6)

There is a natural Gm-linearisation on EF of the standard Gm-action on B×A1. The fibre over
s ∈ A1 of the sheaf EF is given by

EF

(t− s)EF
∼=

E if s 6= 0

F ⊕Q if s = 0.
(7)

In particular, the fibre of E over s = 0 is fixed by the Gm-action, and so are all the fibres of F ⊕Q
over B × {0}, so the linearisation is determined by a simple scaling action on the sections. Over
the central fibre a section over an open set U ⊂ B can be written as

σ = f + te+ tEF(U) ∈ E
F

tEF
(U) (8)

Therefore we can write σ uniquely as f + t (e+ F(U)) + t2E(U). The scaling action on A1 acts on
the section t with weight −1.

We may renormalise the natural Gm-linearisation on EF to scale sections of F with weight 1 and
sections of Q with weight 0 over the central fibre. By Lemma ??, we have an induced Gm-action
on the relative flag scheme

F lr(EF) = ProjB×A1 Sλ(EF) (9)

with a natural linearisation on the Serre line bundle which we denote by Lλ. The central fibre is
isomorphic to F lr(F ⊕Q).

Let Lλ be the line bundle on YF = F lr(EF) corresponding to a partition λ ∈ P(r). The Gm-
action on E induces a linearised action on (YF ,Lλ). We extend this action trivially to any line
bundle Lλ(f∗A), where A ∈ PicB and f : B × A1 → B is the projection. We will abuse notation
by writing this line bundle simply as Lλ(A).
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Claim 8. Assume that B is a curve, E is an ample vector bundle on B and A is an ample line
bundle on B. Let F be a subbundle of E of positive degree and maximal slope with quotient Q.
Then (YF ,Lλ(A), ρ) is a test configuration for (F lr(E),Lλ).

Proof. It suffices to show that the polarisation Lλ(A) is ample over the central fibre. Since E is
ample, we may assume that A = OB . By Proposition ?? it suffices to show that F ⊕Q is ample.

The bundle E/F is ample since it is a quotient of an ample bundle. The subbundle F has
positive degree and it is stable so it is ample by [5, Section 2]. Therefore the Schur power (F ⊕Q)λ

is ample by Proposition ??, which proves the claim.

Remark 9. We fully expect the statement of Claim 8 to be true if F is as above and we only assume
Lλ(A) to be ample.

Claim 10. Let L be an ample line bundle on B. Then the pair (YF ,Lλ(Lm), ρ) is a test configu-
ration for m� 0.

Proof. This follows immediately from [6, Proposition 7.10].

We call the Gm-linearised pair (F lr(E),Lλ(A)) the simple test configuration induced by F .
Assume that the scheme (YF ,Lλ(A)) is a test configuration and let h(k) and w(k) be the Hilbert

and weight polynomials. Let p1 and p2 be the two projection of the product B × P1 and define the
vector bundle

Ẽ = p∗1F ⊗ p∗2OP1(1)⊕ p∗1Q. (10)

We write the vector bundle Ẽ simply as Ẽ = F (1)⊗Q.

Lemma 11. The weight function w(k) of the action ρ and the Hilbert function h(k) = h0(F lr(E),L(A)k)

satisfy the identity
w(k) + h(k) = χ(B × P1, Ẽλ ⊗ p∗1A). (11)

Proof. Assume first of all that A = OB . By the Littlewood-Richardson rule (see [14, (2.3.1)
Proposition]) we have the decomposition

Ẽλ =
⊕
ν,µ

(F (1)ν ⊗Qµ)⊕M
λ
νµ , (12)

where the sum is over all partitions ν and µ whose sizes sum up to the size of λ and the coefficient
Mλ
ν,µ is the Littlewood-Richardson coefficient. Using the Künneth formula, Riemann-Roch on P1

and additivity of the Euler characteristic we see that

χ(B × P1, Ẽλ) =
∑
ν,µ,λ

Mλ
ν,µχ(B × P1, F ν ⊗Qµ ⊗OP1(|ν|))

=
∑
ν,µ,λ

(|ν|+ 1)Mλ
ν,µχ(B,F ν ⊗Qµ)

= χ(B,Eλ) +
∑

|ν|+|µ|=|λ|

|ν|χ(B, (F ν ⊗Qµ)⊕M
λ
ν,µ).

(13)
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Assuming that the vector bundles Ẽλ and Eλ are ample, the weight w(k) is given by

w(k) =
∑

|ν|+|µ|=|λ|

|ν|h0
(
B, (F ν ⊗Qµ)⊕M

λ
ν,µ

)
. (14)

Finally, the calculation works verbatim if the bundle A is nontrivial.

Using Lemma 11 we can calculate both the Hilbert and the weight polynomials using the
Hirzebruch-Riemann-Roch formula. For the former, we have

h(k) =

∫
B

ch(Ekλ) ch(A)TdB , (15)

and similarly for the latter, we have

w(k) =

∫
B×P1

ch(Ẽkλ) ch(A)TdB×P1 − h(k). (16)

There exist integers a0, a1, b0 and b1 so that we can write

χ(B,Ekλ) = rankEkλ
(
a0k

b + a1k
b−1 +O(kb−2)

)
(17)

and
χ(B × P1, Ẽkλ) = rankEkλ

(
b0k

b+1 + b1k
b +O(kb−1)

)
. (18)

The common factor cancels and we get

DF (YF ,Lλ(A)) =
b0a1 − b1a0 + a20

a20
(19)

for the Donaldson-Futaki invariant.
The Chern classes of the twisted bundle Ẽ appearing in Equations (17) and (18) are given by

the following Lemma.

Lemma 12. Let Ẽ be the vector bundle defined in Equation (10) and h is the fibre of a point under
p2. We have

h2(Ẽ) = rF p
∗
1c1(E)h + p∗1c1(F )h + p∗1h2(E) +

rF (rF + 1)h2

2

c2(Ẽ) = rF p
∗
1c1(E)h− p∗1c1(F )h + p∗1c2(E) +

rF (rF − 1)h2

2

c1(Ẽ) = p∗1c1(E) + rFh

A2(Ẽ) = − rF
rE + 1

(
p∗1c1(E)h

rE
− p∗1c1(F )h

rF

)
+ Z

(20)

where Z is contained in the image of p∗1 and the class A2(Ẽ) is defined in Lemma 18.
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Proof. The proposition follows by direct computation from the Whitney sum formula [3, Theorem
3.2] and the general fact that we have

ck(F ⊗ L) =

k∑
j=0

(
r − i+ j

j

)
ck−j(F)c1(L)j (21)

for any locally free sheaf F and line bundle L [3, Example 3.2.2]. Alternatively, one may get the
result using the splitting principle.

Remark 13 (Optimal test configurations). Before proceeding with the proofs of Theorems 1 and
2, we make a naive but natural conjecture to make about the optimality of the test configuration
YF . Assume that B is K-stable and F has maximal slope in the set of torsion free subsheaves of
E. We conjecture that the test configuration YF is a maximally destabilising test configuration of
(F lr(E),Lλ(A)) in the sense that the quantity DF(Y )

‖Y ‖ is bounded below by DF(YF )
YF

.
Optimality of test configurations in this sense was studied by Székelyhidi in the case of toric

varieties [13]. The difficulty in the general case stems from the difficulty of parametrising the
collection of test configurations.

3 A formula for the Chern character of a Schur power

This section is entirely devoted to a technical result used in the computation of the weight polyno-
mial of a flag bundle. We let r and λ be such that λ ∈ P(r) throughout. We also fix a smooth proper
scheme B of dimension b and a vector bundle E of rank rE . Let p be the projection p : F lr(E)→ B.

Of independent interest would be finding a more general and more elegant formulation for
Theorem 16 (Theorem ??), which gives a formula for the second order asymptotics of the polynomial
chEkλ under certain hypotheses. Laurent Manivel has previously calculated the highest order term
in [9, Section 3]. Background on Chern classes can be found in the seminal work of Grothendieck
[?].

If P is a symmetric polynomial and E is a vector bundle with Chern roots x1, . . . , xrE , we write
P (E) = P (x1, . . . , xrE ). On the other hand it also makes sense to consider the polynomial P on the
algebra generated by line bundles on a variety and operations defined by direct sums and tensor
products. In this case we write P (L1, . . . , LrE ) for the resulting vector bundle, not to be confused
with P (E), which is a cohomology class.

Let
cr(x1, . . . , xrE ) =

∑
1≤i1<i2<···<ir≤rE

xi1 · · ·xir (22)

denote the rth elementary symmetric polynomial in x1, . . . , xrE . Similarly we have the complete
symmetric polynomial

hr(x1, . . . , xrE ) =
∑

1≤i1≤i2≤···≤ir≤rE

xi1 · · ·xir . (23)
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Recall that Schur polynomials are a basis of the algebra of symmetric funtion, which appear natu-
rally when computing the cohomology of Schur powers of vector bundles. We define Schur polyno-
mials by using the Giambelli formula [4, Appendix A] as

sλ = det (hλi−i+j)1≤i,j≤l (24)

associated to a partition λ. In particular, s(k) = hk and s1k = ck.

Definition 14. Define the canonical partition σ = σrE ,r depending on the parameter r by

σi = rE + l(λ)− r+(i)− r−(i) (25)

where r+(i) is the smallest integer in r satisfying r+(i) ≥ i and r−(i) the largest integer in r

satisfying r−(i) < i.

Example 15 (The canonical bundle of a Grassmannian). Consider the Grassmannian case r = (p),
where 1 ≤ p < rE . Now the canonical partition σ is the constant partition (rpE), which corresponds
to the rEth multiple of the hyperplane bundle in the case p = 1. Note that the relative canonical
bundle of PE over B is the dual of the corresponding line bundle Lσ.

Theorem 16. Let E be a vector bundle of rank E and λ a partition whose jumps are given by r.
Assume that λ satisfies at least one of the following conditions

• l(λ) ≤ 4

• λ = tσrE ,r for some t ∈ Q and rE > rc.

Then there exist polynomials Bi(E, λ) ∈ Q[λ1, . . . λl, c1(E), . . . , crE (E)] such that

chEλ = rankEλ (1 +B1(E, λ) +B2(E, λ) + · · ·+Bn(E, λ)) (26)

where Bi(E, λ) is homogeneous of degree i as an element of the Chow ring of X and of degree i in
the λi. The polynomials B1(E, λ) and B2(E, λ) are given by

B1(E, λ) =
c1(λ)c1(E)

rE
(27)

and

B2(E, λ) ≡1
h2(λ)h2(E)

rE(rE + 1)
+
c2(λ)c2(E)

rE(rE − 1)

+
rEc1(λ)−

∑
i(2i− 1)λi

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
+O(1).

(28)

where O(1) denotes a term independent of λ. By the equivalence ≡1 we mean the following: If
U and V are k-cycles in B, then U ≡1 V if c1(A)n−k.(U − V ) is equal to 0 for all line bundles
A ∈ PicB.
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It is straightforward to check in cases which yield to computer analysis that it is not necessary
to assume � for the identity in Equation (??) to hold, but we were unable to find a proof in the
general case. Under the assumption �, we prove the statement using the following determinantal
identity, which the author learned from a paper [2] pointed out by Will Donovan.

Lemma 17 (Determinantal identity). Let E be a vector bundle of rank rE and λ a partition of
length l. The Chern character of a Schur power of E is

chEλ = det
(
ch(Sλi+j−iE)

)
i,j

(29)

Proof. By the splitting principle [3, Remark 3.2.3] we may assume that E = L1 ⊕ · · · ⊕ LrE .
Let p be a polynomial function on the set of factors L1, . . . , LrE with integral coefficients aI for
I = (i1, . . . , irE ). We denote

p(L1, . . . , LrE ) =
⊕
I

(
Li11 ⊗ · · · ⊗ L

irE
rE

)⊕aI
, (30)

Schur powers of decomposable vector bundles can be expressed in as

Eλ = sλ(L1, . . . , LrE ), (31)

which we expand as a determinant using Equation (24)

sλ(L1, . . . , LrE ) = det (hλi+j−i(L1, . . . , LrE ))i,j . (32)

Taking Chern characters on both sides completes the proof of the Lemma.

Lemma 18. Let E be a vector bundle of rank rE. The Chern character of the bundle SkE is(
k + rE − 1

rE

)(
1 +

c1(E)

rE
k +A1(E)k2 +A2(E)k + Z

)
, (33)

where A1(E), A2(E) ∈ Q[x1 . . . xrE ] are given by

A1(E) =
h2(E)

rE(rE + 1)
, (34)

A2(E) =
rE − 1

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
(35)

and Z is a sum of terms of Chow degree 3 and higher.

Proof. Recall the definition of the monomial symmetric function mµ of partition µ of length at
most n. Given variables y = (y1, . . . , yn) we set

mµ(y) =
∑
σ∈Sn

yµ1

σ(1) · · · y
µn
σ(n). (36)
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We have

ch(SkE) = chhk(E)

= ch
∑
µ

mµ(E)

=
∑
µ

(1 + µ1x1 + µ2
1x

2
1/2 + · · · ) · · · · · (1 + µrExrE + µ2

rEx
2
rE/2 + · · · )

(37)

where the sum is over all rE-tuples that sum to k. The rest of the computation is an elementary
summation. The Chow-degree one part of ch(SkE) is

ch(SkE)1 = rank
(
SkE

) c1(E)

rE
, (38)

where
rank

(
SkE

)
=

(
k + rE − 1

rE − 1

)
. (39)

The degree two term can be written as

k∑
i=1

k−i∑
j=1

ij

(
rE − 3 + k − i− j

rE − 3

) rE∑
l<m

xlxm +

k∑
i=1

i2
(
rE − 2 + k − i

rE − 2

) rE∑
l=1

x2l /2, (40)

which using the combinatorial identities proved in the appendix simplifies to

(k + rE − 1)!

(k − 2)!(rE + 1)!

rE∑
m<l

xmxl +
(rE + 2k − 1)(k + rE − 1)!

(k − 1)!(rE + 1)!

rE∑
m=1

x2m/2. (41)

Picking out the rank rSkE of SkE as a common factor yields

ch2(SkE) = rSkE

(
k(k − 1)

rE(rE + 1)

rE∑
m<l

xmxl +
2k2 + k(rE − 1)

rE(rE + 1)

∑
m

x2m/2

)
(42)

Recall that the Chern classes of E, when written in terms of the xi, are

c1(E)2 = h2(E) + c2(E) =

rE∑
m=1

x2m + 2

rE∑
m<l

xmxl (43)

and

c2(E) =

rE∑
m<l

xmxl. (44)

Thus we have

ch
(
SkE

)
= rank(SkE)

(
1 +

c1(E)

rE
k +A1(E)k2 +A2(E)k + Z

)
, (45)

where
A1(E) =

h2(E)

rE(rE + 1)
, (46)
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A2(E) =
(rE − 1)c1(E)2

2rE(rE + 1)
− c2(E)

rE + 1
=
rE − 1

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
(47)

and Z is a sum of terms of Chow degree 3 and higher

Remark 19. The length of a partition λ whose jumps are given by r is the largest integer rc in r.

Proposition 20. Theorem 16 holds for partitions up to length 4.

Proof. This is an easy calculation for a computer using Lemma 18 and Lemma 17 [7, Calculation
of Chern classes for Schur powers].

Remark 21 ([9, Section 3]). Alternatively one may expand the Chern character of SkE as

∑
p,q

xp
r∏
i=1

api,qi
pi!

(
k + rE − 1 + |q|
rE − 1 + |p|

)
(48)

where p, q range over r-tuples of nonnegative integers and ai,j is the jth coefficient of the ith Euler
polynomial [9, Proposition 2.2]. This way the existence of claimed decomposition

ch(SkE) = rank(SkE)A(k) (49)

is clear for higher degree terms as well. The determinantal identity implies that we have

ch(Eλ) =
∑

pi,qj∈NrE

xp1+···+pl

p1! · · · pl!
ap1,q1 · · · apl,ql det

((
rE + λi + |qi| − i+ j − 1

rE + |pi| − 1

))
1≤i,j≤l

(50)

Let p : PE → X denote the projection. It is well known that we have the pushforward formula∫
PE
p∗c1 (OPE(1))

n+r−1
=

∫
X

hn(E). (51)

This formula generalises to the following theorem by Laurent Manivel.

Theorem 22 ([9, Proposition 3.1]). Let λ be a partition whose jumps are given by r and mZ≥0.
Then we have

p∗
c1(Lλ)N+m

(N +m)!
≡1 Cλ,rE

∑
|µ|=m,l(µ)≤l(λ)

sµ(λ)sµ(E)∏l(λ)
k=1(rE + µk − k)!

, (52)

where Cλ,rE =
∏l(λ)
i=1(s+(i) − i)!

∏
λi>λj

(λi − λj). For m = n we have equality of cycles, while for
m < n, the relation ≡1 is the one defined in Theorem 16

Remark 23. The result stated in [9] actually claims equality at the level of cycle classes. As we
were unable to reproduce the details which were left for the reader in the paper, we state a slightly
weaker result, but this is enough for our purposes.

Remark 24. Although the highest order term of each Bi(E, λ) is a symmetric function with respect
to the λ, this is not the case for the lower order terms, or indeed for the entire Chern character.
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Remark 25. In particular, Theorem 22 computes the leading coefficient

Dλ,rE :=
Cλ,rE∏l(λ)

i=1(rE − i)!
(53)

of the Hilbert polynomial of a fibre π−1(x) for any x ∈ B.

Remark 26. We can write the line bundle Lσ in terms of the tautological subbundles as

c⊗
i=1

(detR∗i )
ri+1−ri−1 . (54)

Lemma 27 (Canonical bundle of the flag variety). The canonical class of F lr(E) is

c1(L−σ ⊗ p∗
(
KB ⊗ detEl(σ)

)
), (55)

where σ is the canonical partition defined Definition 14 and L−σ denotes the dual of Lσ.

Proof. Consider the exact sequence

0 −→ VF lr(E) −→ TF lr(E) −→ HB −→ 0 (56)

where VF lr(E) is the relative tangent bundle of the fibration F lr(E) → B, TF lr(E) is the tangent
bundle and HB is isomorphic to the pullback of the tangent bundle of the base B. The relative
tangent bundle VF lr(E) has a filtration

0 ⊂ F1 ⊂ · · · ⊂ FN ⊂ VF lr(E) (57)

such that
N⊕
i=1

Fi+1/Fi =
⊕

1≤i<j≤c

Qi ⊗Q∗j (58)

This can be seen by successive fibrations by bundles of r′-flags, where r′ is a subset of r [8]. We
have

det(VF lr(E))
∗ ∼= det

 ⊕
1≤i<j≤c

Qi ⊗Q∗j

∗ (59)

Denote detR∗i = Li and define

A(k) := det

 ⊕
1≤i<j≤k+1

Qi ⊗Q∗j

 = det

 ⊕
1≤i<j≤k

R∗i /R∗i−1 ⊗Rj/Rj−1

 . (60)

We expand the determinant of the vector bundle of Equation (58) as

A(c) = det

 ⊕
1≤i<j≤c+1

Qi ⊗Q∗j

 = det

 ⊕
1≤i<j≤c

R∗i /R∗i−1 ⊗Rj/Rj−1

 . (61)
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This is convenient to write in additive notation as∑
1≤i<j≤c+1

(−(ri − ri−1) (Lj − Lj−1) + (rj − rj−1) (Li − Li−1)) . (62)

We have
A(k)−A(k − 1) = rkLk−1 − rk−1Lk. (63)

for any 1 ≤ k ≤ c. Therefore, we can see that the sum in Equation 62 telescopes and we find

A(c) =

c∑
i=1

(ri+1 − ri−1)Li − rcLc+1. (64)

Finally, the identity
KF lr(E) = −A(c) + p∗KB , (65)

follows from Equation 56. This completes the proof of the Lemma.

Lemma 28. Let r be an increasing sequence of c positive integers. Then σ = σrE ,r is a partition
of length rc with rc < rE. We have

|σ| = rErc, (66)
rc∑
i=1

(2i− 1)σi = r2crE −
c−1∑
i=1

riri+1(ri+1 − ri), (67)

and

h2(σ) =
1

2

(
rcrE

2(rc + 1) +

c−1∑
i=1

riri+1(ri+1 − ri)

)
, (68)

Proof. The proof is a direct calculation. We prove the third identity, which is marginally more
difficult than the first two. First notice that given an integer n and an l-tuple λ, we have

h2(n+ λ) =
l(l + 1)

2
n2 + (l + 1)n|λ|+ h2(λ). (69)

where n is considered to be the constant l-tuple (n, . . . , n). Applying this in the case n = rE + rc

and λ = −(r+ + r−) it suffices to show that

h2(r+ + r−) =
1

2

(
r3c (rc + 1) +

c−1∑
i=1

riri+1(ri+1 − ri)

)
. (70)

This is proved by induction. Let s be the tuple (r1, . . . , rc−1). We then have

h2(r+ + r−)− h2(s+ + s−) = (rc + rc−1)2(rc − rc−1)(rc − rc−1 + 1)/2

+

c−1∑
i=1

(ri − ri−1)(ri + ri−1)(rc − rc−1)(rc + rc−1)

= r3c (rc + 1)/2 + r3c−1(rc−1 + 1)/2 + rcrc−1(rc − rc−1)/2

(71)

from which the claim follows.
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Let NrE ,r denote the relative dimension of a bundle of r-flags, given by

NrE ,r =

c∑
i=1

ri(ri+1 − ri), (72)

with the convention rc+1 = rE .

Proof of Theorem 16. Retain the notation in the statement of the Theorem and denote N = NrE ,r.
Assume that λ = tσ for some t ∈ Q. The leading order term of B2(E, kλ) in k is

pr∗
c1(Lλ)N+2

(N + 2)!
≡1 Dλ,rE

(
h2(λ)h2(E)

rE(rE + 1)
+
c2(λ)c2(E)

rE(rE − 1)

)
, (73)

by Theorem 22. The term B1(E, kλ) can be computed easily using the splitting principle. In
general, we have

c1(Eλ) = rankEλc1(λ)c1(E)/rE . (74)

It suffices to verify that the k-linear term of B2(E, kλ) satisfies the claimed identity.
For any line bundle L on the base B, the Hirzebruch-Riemann-Roch formula applied to the

vector bundle (E⊗L)
kλ yields

χ(B,Ektσ) =

∫
B

chLk|λ| chEkλTdB

=

∫
B

b∑
i=0

(k|λ|c1(L))
i

i!
chEkλTdB .

(75)

Moreover, we have
c1(Lλ(A))N+n

(N + n)!
=

n∑
i=1

c1(Lλ)N+i

(N + i)!
p∗
c1(A)n−i

(n− i)!
(76)

for all n ≥ 1 and A ∈ PicB.
By the asymptotic Hirzebruch-Riemann-Roch formula on F lr(E) for the line bundle Lλ(L|λ|)⊗k,

we have

χ(F lr(E),Lλ(L|λ|)k) =

∫
F lr(E)

(
c1(Lλ(L|λ|))N+b

(N + b)!
kN+b

−
c1(Lλ(L|λ|))N+b−1KF lr(E)

2(N + b− 1)!
kN+b−1

)
+O(kN+b−2)

(77)

The remaining part of the statement then follows by comparing the k-degree b − 1 coefficients of
the c1(L)b−2 term in Equation (75) and Equation (77), latter of which is equal to

kN+1

∫
X

(
(pr∗c1(Lλ))

N+2

2t(N + 1)!
−

(pr∗c1(Lσ))
N+1 (

c1((detE)⊗l(λ)) +KB

)
2(N + 1)!

)
c1(Lb−2)

(b− 2)!
. (78)
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by Lemma 27. We write
B2(E, kλ) = k2B2,2 + kB2,1 +O(k0) (79)

and expand the Chern character in of Ekλ as

chEkλ = Dλ,rE

(
kN +

N

2t
kN−1 +O(k0)

)(
1 +B1(E, kλ) + k2B2,2 + kB2,1

)
. (80)

We can see that

B2,1 =

(
h2(λ)h2(E)

trE(rE + 1)
+

c2(λ)c2(E)

trE(rE − 1)
− l(λ)|λ|c1(E)2

2rE

)
, (81)

which can be written as

t ((rE − 1)h2(σ)− (rE + 1)c2(σ))

2rE

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE + 1)

)
, (82)

Finally by Lemma 28 we have

(rE − 1)h2(σ)− (rE + 1)c2(σ)

2rE
= h2(σ)− (rE + 1)er2c

2

=

∑
i riri+1(ri+1 − ri)

2

=
t (e|σ| −

∑
i(2i− 1)σi)

rE − 1

=
e|λ| −

∑
i(2i− 1)λi

rE − 1

(83)

This completes the proof.

Remark 29. In general, there is a simple relation between the classes B2,0(λ,E) and A2(E). Namely
we have

B2,0 −
2(rE + 1)

rE − 1
A2(λ)A2(E) =

c1(λ)2c1(E)2

2rE2
. (84)

Remark 30. The same calculation can be used to find the codegree 1 asymptotics of Bi(E, kλ) in
any Chow degree, when λ = kσ for some k ∈ Q. Keeping to the same notation as in the proof, we
have

Bm(E, kλ) = kmCλ,r

∑
|µ|=m sµ(λ)sµ(E)∏l
i=1(rE + µi − i)!

+ km−1Cλ,r

(
m
∑
|µ|=m sµ(λ)sµ(E)

2t
∏l
i=1(rE + µi − i)!

−
|λ|c1(E)

∑
|µ|=m−1 sπ(λ)sπ(E)

2
∏l
i=1(rE + pi − i)!

)
+O(km−2),

(85)

for any m ≥ 2.
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4 Flag variety over a curve

The aim of this section is to prove Theorem 1.

Proof of Theorem 1. Let B be a curve. Let F be a subbundle of E and A a line bundle on B

such that the polarised scheme (Y ,Lλ(A)), where Y = F lr(EF), is a test configuration for
(F lr(E),L(A)). We may assume that Ẽλ⊗A is ample, since twisting by the pullback OP1(1) leaves
Equation (19) invariant. We will show that the Donaldson-Futaki invariant of the test configuration
(Y ,Lλ(π∗A)) satisfies

DF(Y ) = Cg,E,A,λ(µE − µF ), (86)

where C is a positive number depending on B,A,E, F and λ. By Riemann-Roch the Hilbert
polynomial of Lkλ(A) satisfies

χ(F lr(E),Lk) = rankEkλ (a0k + a1) , (87)

where

a0 = c1(λ)µE + µA,

a1 = 1− g.
(88)

Using the Riemann-Roch formula on B × P1, we can write

χ(B,Eλ ⊗ Lmk) =

∫
B×P1

rE
kc1(A) ch(Ẽkλ)TdB×P1 . (89)

By Theorem 16 we have

h0(B × P1, Ẽkλ) = rankEkλ(b0k
2 + b1k +O(1)), (90)

where denoted

b0 =
h2(λ)h2(Ẽ)

rE(rE + 1)
+
c2(λ)c2(Ẽ)

rE(rE − 1)
+
c1(λ)

rE
c1(Ẽ).c1(A) (91)

and

b1 = HλA2(Ẽ)− c1(λ)c1(Ẽ).KB×P1

2rE
− c1(A).KB×P1

2
. (92)

Here the class A2(Ẽ) is defined in Equation (35) and we write

Hλ =
rEc1(λ)−

∑rc
i=1(2i− 1)λi

rE − 1
. (93)

Let g and h be the two fibres of the first and second projection of the product B×P1, respectively.
The intersection matrix with respect to this basis is(

0 1

1 0

)
. (94)
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As a special case of Lemma 12 we have

c1(Ẽ)2 = 2rF rEµE . (95)

Calculating the intersection classes appearing in Equations (91) and (92) gives

−c1(Ẽ).KB×P1

2
= (fh + (rEµE)g).(h + (1− g)g)

= rEµE +
(1− g)c1(Ẽ)2

2rEµE
,

−c1(A).KB×P1

2
= µAg.(h + (1− g)g) = µA, and

c1(Ẽ).c1(A) = rFµA.

(96)

Let y = (y1, . . . , yl) be variables. For any such y define the symmetric polynomial

A2(y) =
rE − 1

2

(
h2(y)

rE(rE + 1)
− c2(y)

rE(rE − 1)

)
. (97)

Using the above calculations and Remark 29 we then have

b0 =
2(rE + 1)

rE − 1
A2(λ)A2(Ẽ) +

c1(λ)2c1(Ẽ)2

2r2E
+
c1(λ)rFµA

rE
,

b1 = HλA2(Ẽ) + a0 +
(1− g)c1(λ)c21(Ẽ)

2r2EµE
,

(98)

By direct calculation, and Lemma 12 the Donaldson-Futaki invariant defined in Equation (19) is
given by

DF(Y ) =
(
a1b0 − a0b1 + a20

)
/a20

= Cg,E,A,λ(µE − µF ),
(99)

where the constant Cg,E,A,λ is given by

Cg,E,A,λ =
rF

(rE + 1) (c1(λ)µE + µA)
2

(
Hλ (c1(λ)µE + µA) +

2(g − 1)(rE + 1)A2(λ)

rE − 1

)
. (100)

We are left to verify that the constant Cg,E,A,λ is positive. For g ≥ 1, it suffices to show that Hλ

and A2(λ) are positive since c1(λ)µE + µA is positive as Lλ(A) is ample.
Using rE − 1 ≥ rc and recalling that rc is the length of λ, we have

(rE + 1)rE(rE − 1)A2(λ) = (rE − 1)c1(λ)2 − 2rEc2(λ)

= (rE − 1)

rc∑
i=1

λ2i − 2
∑

1≤i<j≤rc

λiλj

≥
∑

1≤i<j≤rc

(λi − λj)2 > 0.

(101)
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We have
l∑
i=1

(2i− 1)λi =

c∑
j=1

(λ′i)
2, (102)

where λ′ denotes the conjugate partition of λ. To see that the first term of Equation (100) is
positive, notice that

ec1(λ)−
∑
i

(2i− 1)λi =

s∑
j=1

λ′i(rE − λ′i) > 0, (103)

which is positive since rE > rc ≥ λ′i for all i. Hence Cg,E,A,λ > 0 for all g ≥ 1. A similar calculation
shows that C0,E,A,λ is positive.

5 Flag variety over a base of higher dimension

Our aim is to prove Theorem 2. We proceed in two stages. First, we assume for simplicity that the
test configuration is induced by a subsheaf of E. Finally, we use Proposition 32 that this can be
done without loss of generality.

Proof of Theorem 2. By Proposition 32 we may assume that F is a subbundle. We will show that
the leading term in m in the Donaldson-Futaki invariant of the test configuration (Y ,Lλ(p∗1L

m))

is
DE,λ,L,rF (µ(E)− µ(F )), (104)

where DE,λ,L,rF is a positive number depending on B,L,E, F and λ. Here p1 is the first projection
from B × A1. Expand the Chern character of Ekλ as

chEkλ =

b∑
i=0

chiE
kλ (105)

and the Todd class of B as

Todd(B) =

b∑
i=0

Toddi(B). (106)

We then have

χ(F lr(E),Lλ(Lm)⊗k) = χ(B,Ekλ ⊗ Lmk)

=

∫
B

rE
mkω ch(Ekλ)Td(B)

=
(mk)b

b!
ωb rank(Ekλ)

+
(mk)b−1

(b− 1)!
ωb−1

(
rank(Ekλ)

c1(B)

2
+
kc1(λ)c1(Eλ)

rE

)
+

(mk)b−2

(b− 2)!
ωb−2

(
rank(Ekλ) Todd2(B) +

kc1(λ)c1(Eλ).c1(B)

2rE
+ ch2(Ekλ)

)
+O(kb−3),

(107)
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which follows from Riemann-Roch and the pushforward formula of Proposition ??. Here Td2(B)

is the second Todd class of B. Using Riemann-Roch on B × P1, we similarly compute the Hilbert
polynomial of Ẽλ ⊗ p∗1Lm, where p1 is the first projection.

To apply Lemma 11, choose m0 so that the bundle E ⊗ L
m0
c1(λ) is ample and assume from now

on that m > m0.
As in Section 4, we write

h0(B,Ekλ ⊗ Lmk) = rankEkλ
(
a0k

b + a1k
b−1 +O(kb−2)

)
,

h0(B × P1, Ẽkλ ⊗ Lmk) = rankEkλ
(
b0k

b+1 + b1k
b +O(kb−1)

)
.

(108)

Next, we expand the ai and the bi in powers of m as

b0 = b0,0m
b + b0,1m

b−1 +O(mb−2), (109)

b1 = b1,0m
b + b1,1m

b−1 +O(mb−2), (110)

a0 = a0,0m
b + a0,1m

b−1 +O(mb−2), (111)

a1 = a1,0m
b + a1,1m

b−1 +O(mb−2). (112)

Let ω = c1(L) and η = p∗1ω. Using Theorem 16 and equation (107), we see that

b0,0 =
c1(λ)

rE · b!
ηb.c1(Ẽ)

b0,1 =
1

(b− 1)!
ηb−1.

(
h2(λ)h2(Ẽ)

rE(rE + 1)
+
c2(λ)c2(Ẽ)

rE(rE − 1)

)

b1,0 = −η
b.KB×P1

2 · b!

b1,1 =
1

(b− 1)!

(
ηb−1.HλA2(Ẽ)− c1(λ)ηb−1.KB×P1 .c1(Ẽ)

2rE

)

a0,0 =
ωb

b!
=

degL

b!

a0,1 =
c1(λ)

rE(b− 1)!
ωb−1.c1(E)

a1,0 = 0

a1,1 = −ω
b−1.KB

2(b− 1)!
= − degKB

2(b− 1)!
.

The proof of the following lemma is a straightforward calculation.
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Lemma 31. The intersection numbers appearing above are

ωb = degL

ωb−1.c1(E) = rEµE

ωb−1.KB = degKB

ηb.c1(Ẽ) = degL(rEα+ rE)

ηb−1.c1(Ẽ)2 = 2rF rEµE

ηb−1.c2(Ẽ) = rF rEµE − rFµF
ηb−1.KB×P1 .c1(Ẽ) = f degKB − 2rEµE

ηb.KB×P1 = −2 degL

ηb.A2(Ẽ) =
rE(µE − µF )

rE + 1
.

We write Laurent expansion of the Donaldson-Futaki invariant in m

DF(Y ,LE,m, ρ) = F0 + F1m
−1 +O(m−2), (113)

where

F0a
2
0 = a1,0b0,0︸ ︷︷ ︸

=0

−a0,0b1,0 + a20,0 = −
(

degL

b!

)2

+

(
degL

b!

)2

= 0 (114)

and
F1a

2
0 = a1,0b0,1︸ ︷︷ ︸

=0

+a1,1b0,0 − a0,1b1,0 − b1,1a0,0 + 2a0,0a0,1. (115)

An elementary calculation similar to the one we did in Section 4 shows that

DF(Y ,Lλ(p∗1L
m)) = DE,λ,L,rE (µE − µF )m−1 +O(m−2) (116)

where
DE,λ,L,rE =

rF bHλ

(rE + 1) degL
(117)

is a positive constant by the same argument as in Section 4. Theorem 2 then follows from the
following Proposition.

Proposition 32. Using notation from Section 2, let (F lr(EF),Lλ(Lm)) be a test configuration for
(F lr(E),Lλ(Lm)) where F is a saturated torsion free subsheaf of E. Then the formula

DF(F lr(EF),Lλ(Lm)) = DE,λ,L,rE (µE − µF )m−1 +O(m−2) (118)

for the Donaldson-Futaki invariant still holds for m� 0.
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Proof. It follows that E/F is also torsion free, and F and E/F are both locally free over an open
subset U whose complement is of dimension at least 2. The leading order terms in m of h(k) and
w(k) given in Equation (109) only involve the first Chern classes of F and E/F . But the first Chern
classes can be computed over the open set U where F and E/F are locally free. The Schur functor
commutes with localisation, so Theorem 16 holds for the restriction

(
F ⊕ E/Fλ

) ∣∣
U
. Therefore, we

may assume without loss of generality that F is a subbundle.

6 K-stability of complete intersections

The objective of this section is to provide additional examples of K-unstable varieties. We describe
a situation in which the Donaldson-Futaki invariant of a complete intersection can be calculated.
In Section 7 and apply the result in the case of flag bundles in Section 8.

The idea is to fix a complete intersection X in a polarised variety Y and a test configuration Y

for Y . Consider then the Zariski closure of the orbit of X in Y under the Gm-action. The scheme
X is a test configuration for X and its Donaldson-Futaki invariant depends, a priori, on the test
configuration Y in a complicated way. However, in some favourable situations the Donaldson-
Futaki invariant of X is related to the Donaldson-Futaki invariant of Y and topological data of X
in Y . Examples of this behaviour have been given by Stoppa-Tenni [12] and Arezzo-Della Vedova
[1].

The main result of this chapter is a generalisation of an example in [12].

Theorem 33 (A simple limit for high genus curves). Let E be an ample vector bundle of rank rE
on a curve, and F is a subbundle of E of rank rF . Assume that

(Y ,L ) = (F lr(EF),Lλ) (119)

is a test configuration for (F lr(E),Lλ) as defined in Chapter 1, and that λ is in P�(r). Let X be
a generic complete intersection in F lr(E) of codimension less than the integer Nλ,rE ,rF defined in
Equation (127). Then the Donaldson-Futaki invariant of the test configuration X , defined as the
closure of the orbit of X in Y , is given by

DF(X ) = D (CE degE + CF degF ) g +O(g0), (120)

where D is a positive number and CE and CF are given in Equation (146). All three numbers
depend only on degE,degF , the codimension u of X and λ.

We may easily construct examples of K-unstable complete intersections in flag bundles over
curves using Theorem 33. The simplest such construction is due to Stoppa and Tenni.

Fix a positive integer d and let C(g) be a sequence of d-gonal curves of genus g for all integers
g larger than 2, and let Lg be a degree d line bundle on C(g). Let

Fg = Lg and Eg = O⊕rE−1C(g) ⊕ Lg.
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With these choices degEg and degFg are bounded as functions of g and the final term in Equation
(120) is under control. The vector bundle Eg is only globally generated but we may find a test
configuration for an ample polarisation on X whose Donaldson-Futaki invariant is arbitrarily close
to the one given by Equation (120) when applied to the globally generated vector bundle Eg. We
do this by replacing the vector bundle Eg with Eg ⊗A

ε
|λ| , where A is an ample line bundle on C(g).

Finally, we use the following Lemma which follows directly from calculations done in Sections 4 and
7.

Lemma 34. The Donaldson-Futaki invariant of (YF ,Lλ(εA)) is continuous in ε.

Using Lemma 34 and simple combinatorics outlined in Section 8 we obtain the following new
examples of K-unstable varieties.

Theorem 35 (Theorem ??). Let Y be the Grassmannian of p-dimensional quotients of Eg with
the polarisation Lλ(εA), where λ = (1p). Let s be a positive integer.

Then there exists numbers ε0 > 0 and g0 > 0 such that a general hypersurface H in Y which is
a defined by a section of a multiple of s (Lλ(εA)) with the polarisation Lλ(εA)

∣∣
H

is K-unstable for
all ε < ε0 and g > g0.

We may also ask for H to be smooth in the statement of Theorem 35 by Bertini’s theorem [6,
Theorem II.8.18].

Proposition 36. For s > e the hypersurface H is of general type.

Proof. We prove that KH is ample. This follows directly from the adjunction formula [3, Example
3.2.12]. In the notation of Theorem 35, we have

KH =
(
L−σ +KC(g) + sLλ(εA)

) ∣∣
H
, (121)

where σ is the partition (rE
p). The statement then follows from Remark ?? and the preceding

discussion.

7 The Donaldson-Futaki invariant of a complete intersection

Let ρ be Gm-action on a polarised variety (Y,L) of dimension n and let ϕi be sections of H0(Y,Lsi)

for 1 ≤ i ≤ u. Let γ be an integer, and assume that the natural representation of ρ on H0(Y,Lsi)

acts on ϕi by t.ϕi = tγsiϕi for all i and t ∈ Gm. Denote the complete intersection of ϕ1, . . . , ϕu

by X. The Gm-action determines a product test configurations Y for (Y,L) and X for (X,L
∣∣
X

),
since X is invariant under ρ.

Write the Hilbert and weight functions of Y and X as

h0Y (k) = a0k
n + a1k

n−1 +O(kn−2),

wY (k) = b0k
n+1 + b1k

n +O(kn−1),

h0X(k) = c0k
n−u + c0k

n−u−1 +O(kn−u−2)
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and

wX(k) = d0k
n−u+1 + c0k

n−u +O(kn−u−1),

respectively. The following Proposition is a special case of [1, Theorem 4.1]. We present an elemen-
tary proof in Section ?? of the Appendix along the lines of [12].

Proposition 37. The Donaldson-Futaki invariant of the test configuration X is given by

DF(X ) = DF(Y ) +
νY − γ
n+ 1− u

(
(n+ 1)S

2u
− uµY

n

)
, (122)

where we have denoted

νY =
b0
a0
, S =

u∑
i=1

si and µY =
a1
a0
.

The result of Proposition 37 also applies also to test configurations which are not products.
Assume that (Y ,L ) is an arbitrary test configuration for (Y,L). Assume for simplicity that the
exponent is 1. Let

R =

∞⊕
k=0

Rk =

∞⊕
k=0

H0(Y,Lk) (123)

be the graded coordinate ring of (Y,L) and let F•R be a graded filtration corresponding to the test
configuration Y (cf. Remark ??). We have an induced map

R −→ Rγ :=

∞⊕
k=0

Rk/Fnk−1Rk, (124)

where nk is the smallest integer such that FnkRk = Rk, which is finite by condition (iii) of Remark
??. Let Iγ be the ideal generated by

⊕∞
k=0 Fnk−1Rk. Define the subscheme of least weight of the

test configuration Y to be the subscheme of Y determined by R/Iγ .
The limit of the subscheme of least weight is fixed under the Gm action over the central fibre.

Slightly more generally, the following lemma follows directly from the definition of the scheme Yγ .

Lemma 38. The closure of the orbit of the subscheme of least weight Yγ in Y is isomorphic to
Yγ × A1 as (quasi-projective) polarised varieties. Moreover, the lifting of the Gm-action on A1 to
Yγ × A1 is trivial with a possibly nontrivial linearisation.

Proof. Let Yγ denote the closure of Yγ under the Gm-action. Consider the linear map

Φ: R→
∞⊕
k=0

∞⊕
i=0

FiRk/Fi−1Rk
J

(125)

defined by the projection Rk → Rk/Fnk−1Rk and J is generated by all the elements which lie in⊕∞
k=0 Fnk−1Rk. It is straightforward to see that Φ is a homomorphism of graded rings whose kernel
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is exactly the ideal Iγ . Finally, the scheme Yγ is isomorphic to the product Yγ × A1 since it is the
projectivisation of the ring

ReesF•R/J̃, (126)

where J̃ is the ideal generated by (
⊕nk−1

i=1 FiR)ti. The statement about the action follows since the
Gm-action simply scales any graded component of its coordinate ring with weight −nk.

Example 39. If the filtration F•R is the slope filtration from Remark ??, then the subscheme of
least weight recovers the subscheme associated to the ideal I ⊂ OB , in the notation of Remark ??.

By a generic hypersurface or complete intersection, we mean one which is contained in a dense
open set of the corresponding Hilbert scheme.

Lemma 40. Let the dimension of the subscheme Yγ be greater than or equal to u. Then a generic
complete intersections of codimension u on Y degenerates to a complete intersection on the central
fibre. Moreover, if ϕ is a generic section of H0(Y, Ls), then the limit of ϕ has weight −ns in the
Gm-representation on H0(Y0,L0).

Proof. Let Z be a complete intersection in Y of codimension no larger than u. We can identify not
just Yγ , but Z ∩ Yγ , which is generically a proper intersection, with its limit in the central fibre of
Y . The locus V in the Hilbert scheme of complete intersections of the same topological type as
Z, whose the intersection with Yγ is not complete intersection, is determined by any finite set of
generators of the ideal of Yγ in Y . By the assumption on the codimension of Z, the locus V is a
proper closed subset. Hence the locus where the limit is not a complete intersection is also a proper
closed subset. The second claim follows from the definition of the Gm-action.

A nontrivial example where the above results can be applied is given in the following section.

8 Complete intersections in flag varieties

In this section we apply the results of Section 7 to flag bundles. Fix a smooth projective variety
(B,L), a line bundle A on B and a flag bundle Y = F lr(E) with an ample underlying vector bundle
E of rank rE . Let Y be polarised by its relative canonical bundle Lσ. Fix a subsheaf F ⊂ E of rank
rF and let (Y ,Lλ(L)) be the test configuration of (Y,Lλ(L)) induced by the degeneration of the
vector bundle E into a direct sum F ⊕ E/F defined in Section 2. We also denote q = rankE/F .

Lemma 41. The relative dimension of the least weight subscheme in the central fibre F lr(EF)0 is
given by

Nr,rE ,rF =

p−2∑
i=1

ri(ri+1 − ri) + rp−1(q − rp−1) +

c∑
i=p

(ri − q)(ri+1 − ri), (127)

where r = (0, r1, . . . , rc, rE) and

p = min{a : e ≥ a ≥ 1, ra > rE − f} (128)
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Proof. We will describe the filtration corresponding to the test configuration F lr(EF) in detail in
Section ??. However, it suffices to see that the subscheme fixed by the Gm-action on the central
fibre is the intersection of F lr(EF) with the subscheme

p−1∏
i=1

P(
∧ri

E/F)×
c∏
j=p

P(
∧q

E/F ⊗
∧rj−q

E) ⊂
c∏

k=1

P(
∧rk

E) (129)

The dimension of the locus of k-planes containing a fixed q-dimensional vector space in a Grass-
mannian of k-planes in an l-dimensional vector space is (k − q)(l− k). The dimension in Equation
(127) is then calculated by considering the flag bundle as an iterated fibration of Grassmannians
and using elementary geometric considerations.

Lemma 42. Let λ be an element of P(r). The lowest weight γ of the Gm-action on sections of Lλ
is given by

γ =

c∑
i=p

si max{(ri − q), 0}, (130)

where sc−i = λi − λi−1 for i ∈ r and p was defined in Equation (128).

Proof. Recall that the bundle Lλ is the restriction of the line bundle
⊗c

i=1OP(
∧ri E)(si). By Borel-

Weil (cf. Equation ??) the sections of lowest weight over the central fibre of Y are sections of

p−1⊗
i=1

Ssi(
∧ri

E/F)⊗
c⊗
j=p

Ssj
(∧q

E/F ⊗
∧rj−q

F
)
. (131)

The statement of the Lemma follows by the definition of the action, which scales fibres of F by
weight 1 and fixes the complement E/F .

For any tuple of sections

ϕ = (ϕ1, . . . , ϕu) ∈
q∏
i=1

|siLλ(A)| (132)

we write
Xϕ = Z(ϕ1) ∩ . . . ∩ Z(ϕu) (133)

for their intersection. Let X be the Zariski closure of the orbit of X under the Gm-action inside
Y . Let F be a torsion free, saturated coherent subsheaf of E and assume that the sections ϕi are
generic and that u < Nr,rE ,rF . We are now in the situation of Lemma 40 and hence of Proposition
37 with the weight γ given by Lemma 42. We take the polarisation on Xϕ to be the restriction
Lλ(A).

We now revert to the notation of Sections 4 and 5, where b0, b1, a0 and a1 are the coefficients of
the two highest degree terms of polynomials χ(F lr(E),Lλ(A)k)/ rankEkλ and χ(B, Ẽkλ⊗Ak)/ rankEkλ,
respectively. Recall that sections of Ekλ correspond to sections of Lλ(A)k and the highest order
terms of the polynomial χ(B, Ẽkλ⊗Ak) and the weight polynomial w(k) of (Y ,Lλ(A)) agree.
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Proposition 43. Let σ be the canonical partition σrF ,r (cf. Definition 14). The difference

∆ = DF(Y )−DF(X ) (134)

is positive for the polarisation Lσ if the base B is a curve. If the dimension dimCB is arbitrary,
then ∆ is positive when the polarisation is taken to be Lσ(Lm) on F lr(E) for m� 0.

Remark 44. If B is a curve, E is ample and semistable, then the complete intersection Xϕ polarised
by the restriction of the bundle Lσ is not destabilised by test configurations induced from extensions
of E.

If B is an arbitrary polarised manifold, the same statement is true for complete intersections of
sections of Lσ(Lm)⊗ si , 1 < i < u, for m� 0. It would be more interesting, although much harder,
to study the asymptotics of test configurations of a fixed complete intersection as m goes to infinity.

Proof of Proposition 43. Indeed we have

b0
a0
− γ ≥ 0 (135)

with equality only in the case of the action scaling every section with the same weight. The above
inequality is equivalent to

lim
k→∞

wY (k)

kh0Y (k)
− γ ≥ 0 (136)

where h0Y (k) is Hilbert polynomial of Lσ(A) and w(k) its equivariant analogue. Write

w(k) =
∑
i

idimV
(k)
i , (137)

where V (k)
i is the ith weight subspace of the representation of Gm onH0(B,Ekσ⊗Ak). By definition

of γ, we have
wY (k) ≥

∑
i

γ dimV
(k)
i = γkh0Y (k). (138)

It suffices to show that we have the inequality

n(n+ 1)

2
≥ µY (139)

We have
µY = µf + µrel, (140)

where µf is the slope of a fibre defined by

rankEkσ = Dσ,r

(
kNrE ,r + µfk

NrE,r−1 +O(kNrE,r−2)
)
, (141)
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for some rational number Dσ,r and µrel = a1
a0
. By the choice of polarisation we have µf =

NrE,r
2 .

The other term µrel is obtained from Riemann-Roch. In the case dimB = 1 the inequality (139) is
clear. Consider the line bundle Lσ(Lm). Then by Equation (109) we have

µrel = −bdegKB

2 degL
m−1 +O(m−2), (142)

so there is an m0 > 0 such that the inequality (139) holds for m > m0.

In light of Proposition 43, we suspect that one has to start with an unstable vector bundle E
in order to find K-unstable examples of complete intersections for some choices of the parameters
E,F,B and si. We conclude with the proof of Theorem 33 and explain how Theorem 35 follows
from Theorem 33.

Proof of Theorem 33. By Lemma 40, Lemma 41 and Lemma 42 we are in situation of Proposition
37, so the rest of the proof reduces to a straightforward calculation. Recall from Chapter 1 that we
have

b0 =
h2(λ)rF (rEµE + µF )

rE(rE + 1)
+
c2(λ)rF (rEµE − µF )

rE(rE − 1)
,

b1 = HλA2(Ẽ) + c1(λ)

(
µE +

rF
rE

(1− g)

)
,

a0 = c1(λ)µE ,

and

a1 = 1− g,

where ci(λ) denotes the ith elementary symmetric polynomial of λ = (λ1, . . . , λc). After some
algebraic manipulation we can write DF(X ) = Cg +O(g0) where

C = D
(
h2(λ)(n+ 1)(n− u)rF rE

2(µE − µF )− γuc1(λ)µE (143)

− c1(λ)2rE(rE + 1)rF
(
(n2 + n− nu− rEu)µE − (n+ 1)(n− u)µF )

) )
(144)

where n = NrE ,r + 1 and D =
(
rE

2(rE
2 − 1)n(n+ 1− u)

)−1. Alternatively we can write

DF(X ) = D (CE degE + CF degF ) g +O(g0), (145)

where we have denoted

CE = (rE
2 − 1)uc1(λ)(rF c1(λ)− rEγ)− rF

rE
CF (146)

and

CF = (NrE ,r + 1)(NrE ,r − u)
(
(rE + 1)c1(λ)2 − 2rEh2(λ)

)
. (147)
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Proof of Theorem 35. In the situation of Theorem 35 we have degE = degF . Computing the sign
of the sum CE+CF amounts to solving a polynomial inequality in e, λ, f and u. Let p be an integer
between 1 and e − 1. Since we are assuming e − f ≥ p, we also have γ = 0 by Lemma 42. Then
there exist positive constants D′ and D′′ such that

D′(CE + CF ) = D′′(u− 1)

− (rE − rF )(rE − p− 1)(rE − p)(rE − p+ 1)(p− 1)p(p+ 1)

− rE(rE − 1)(rE + 1)(rE − rF − p)p.

(148)

Hence assuming u = 1 implies immediately that CE + CF < 0 so the test configuration induced
from (Y ,L ) as described on page 20. The code for repeating the calculations and for simulating
more examples is contained in [7, Futaki invariants of complete intersections].

Remark 45. While the inequality CE +CF < 0 seems to hold more generally we only know how to
prove it in the Grassmannian case.

Example 46 (Projective bundles). Equation (143) gets a very nice form for projective bundles. In
the notation used in the proof of Theorem 33, letting λ = (1) gives

DF(X ) =
( (rF − γu) degE − (rE − u) degF

rE2(rE + 1− u)

)
g +O(g0). (149)

This is the example given by Stoppa-Tenni [12]. Note that the convention the authors use for PE
is dual to ours.
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