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Abstract

We generalise partial results about the Yau-Tian-Donaldson correspondence
on ruled manifolds to bundles whose fibre is a classical flag variety. This is
done using Chern class computations involving the combinatorics of Schur
functors. The strongest results are obtained when working over a Riemann
surface. Weaker partial results are obtained for adiabatic polarisations in the
general case.

We develop the notion of relative K-stability which embeds the idea of
working over a base variety into the theory of K-stability. We equip the set of
equivalence classes of test configuration with the structure of a convex space
fibred over the cone of rational polarisations. From this, we deduce the open-
ness of the K-unstable locus. We illustrate our new algebraic constructions
with several examples.
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Chapter 1

Introduction

1.1 Introduction

In this thesis we study a mysterious relationship between complex differential
geometry and algebraic geometry which has been established around the exis-
tence of a best possible Kähler form on a projective complex manifold. Recall
that a Kähler manifold is a pair (X,ω) where X is a complex manifold and ω
is a closed positive nondegenerate differential form of type (1,1). Kähler man-
ifolds have a wealth of good properties which belies their simple definition. It
is natural to study the problem of finding a best possible Kähler metric on X.

A wonderfully rich picture arises already for Riemann surfaces, which have
been studied both algebraically and analytically for more than a century. The
famous Uniformisation Theorem of Poincaré and Köbe states that a compact
Riemann surface can be written as a quotient of a model space, either the
hyperbolic disk, the flat complex plane or the round sphere. Alternatively, this
can be stated by saying that any compact Riemann surface can be endowed
with a metric, unique up to a constant, whose sectional curvature is constant.
On the algebraic side, the compactification of the moduli space of curves is,
of course, one of the major accomplishments of modern algebraic geometry.
The two points of view are connected, for example, in the definition of the
Weil-Petersson metric on the compact moduli space of algebraic curves.

A pair (X,L), where X is a variety defined over the complex numbers and
L is an ample line bundle, is called a polarised variety. We assume for now that
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X is smooth. A canonical metric on the polarised variety (X,L) is a Kähler
form ω which is a solution to some naturally defined differential equation, is
unique up to an automorphism of X and whose cohomology class is equal
to c1(L). Canonical metrics in this sense are one natural generalisation of the
Uniformisation Theorem to higher dimensions. Given the existence of constant
sectional curvature metrics on Riemann surfaces, it is tempting to conjecture
that canonical metrics should always exist. This turns out to be a subtle
question, which has inspired a wealth of new mathematics at the intersection
of complex and algebraic geometry.

The theory of K-stability connects the question of existence of canonical
metrics on higher dimensionals polarised varieties to algebraic geometry. K-
stability is a conjecturally equivalent condition to the existence of a canonical
metric on (X,L). We call this the Yau-Tian-Donaldson (YTD) correspon-
dence.

A key idea that originates from the work of Hilbert and Mumford is that
one can associate numerical invariants to degenerations of (X,L). Let m be a
natural number and consider a projective embedding

X ⊂ Pn = P(H0(X,Lm)) (1.1)

and an action of the multiplicative group Gm on Pn, which acts linearly on the
hyperplane bundle on Pn. Then the orbit of X under the Gm-action is a family
of copies of (X,Lm) which can be compactified over the point t → 0 in Gm.
The resulting family X , which has a special fibre (X0, L0) invariant under
the Gm-action, is called a test configuration. The precise definition is given in
Definition 3.1. The group Gm has a representation on the space of sections of
the line bundle L0 which determines an important numerical invariant called
the Donaldson-Futaki invariant.

With certain refinements which will be discussed in the text, we say that
(X,L) is K-stable if the Donaldson-Futaki invariant DF(X ), which will be
defined by Equation (3.4), is positive for all test configurations X . Otherwise,
we say (X,L) is K-unstable. Paraphrasing the earlier discussion, a negative
Donaldson-Futaki invariant is a conjectural obstruction to the existence of a
canonical metric.

Most of this work is dedicated to the study of Donaldson-Futaki invariants
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in a simple example. We say that a variety Y is a flag bundle if it comes with a
Zariski-locally trivial projection p : Y → B to a projective variety B, such that
the fibres of p are isomorphic to a flag variety. This is a natural generalisation
of a geometrically ruled manifold which is the single most studied example in
the theory of K-stability. The only rival to this status are toric varieties. Flag
bundles retain many of the properties of geometrically ruled manifolds while
exhibiting new features which make them worthy of an extended discussion,
such as a larger Picard group and richer geometric structure. Flag bundles
also provide a working example to test a folklore conjecture that the stability
properties of the underlying vector bundle should determine the K-stability
of its associated projective manifolds. We give a partial affirmative answer to
this conjecture.

Preliminary material is presented in Chapters 2 and 3. The former recalls
basic notions of group actions on algebraic varieties and introduces the reader
to flag bundles in more detail. The latter is an introduction to the theory of
K-stability. Chapter 4 contains a technical result, which will be crucial in the
computation of Donaldson-Futaki invariants in Chapter 5 where we construct
destabilising test configurations for flag bundles. Chapter 6 is independent of
the rest of the text in which we describe a generalisation of the Uniformisation
Theorem to flag bundles whose underlying vector bundle is a polystable vector
bundle over a Riemann surface. We thus obtain partial results towards a YTD
correspondance on flag bundles. We give additional examples of K-unstable
varieties in Chapter 7, where we study the K-stability of complete intersections.

Chapter 8 is almost entirely independent of the rest of the work and will
discuss a general theme that arises from the particularly simple type of test
configuration that was used in previous chapters. Families of simple projective
varieties have been a rich source of examples in the past [3, 4, 32, 33, 50, 57,
68, 74, 81]. We define and attempt to justify the notion of relative K-stability.
Roughly speaking this term refers to dividing the set of test configurations for
(X,L) into collections of simpler test configurations, each of which linked to a
projective morphism X → B, where B is a projective variety.

We develop the theory of filtrations of sheaves with a view towards studying
relative K-stability. This generalises the work by Székelyhidi [85] and Witt-
Nyström [89]. Certain constructions of new test configurations from old have
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already appeared in the work of Ross and Thomas [68]. We contextualise them
using the language of filtrations and obtain new constructions, which we hope
will be helpful in exhibiting interesting new behaviour of K-stability in the
Kähler cone. We focus particularly on a weighted tensor products on filtered
algebras, which allow us to endow the set of test configurations, up to some
natural identifications, with a convex structure which is naturally fibred over
the cone of polarisations. We show that Donaldson-Futaki invariants behave
well under this construction which, in particular, imples the openness of the
K-unstable locus.

1.2 Background

There are three natural higher dimensional analogues to constant sectional
curvature metrics in Kähler geometry. A Kähler form ω is extremal if the
complex gradient vector field of its scalar curvature is holomorphic. The form
ω has constant scalar curvature (cscK) if this gradient vector field vanishes
identically. This coincides with the usual requirement that the scalar curvature
function is constant. The simplest case is to consider the equation

Ricω = Cω, (1.2)

where C is a constant and Ricω is the Ricci form. These metrics are called
Kähler-Einstein and they form an important special class of cscK metrics.

Uniqueness was proved in increasing generality by Bando and Mabuchi
[10], Chen [17], Donaldson [26], Mabuchi [58] and Berman and Berndtsson
[12], who showed that an extremal metric on an arbitrary Kähler manifold
(X,ω) is unique up to automorphisms.

1.2.1 Kähler-Einstein metrics and the history of the YTD
correspondence

The cohomology class of a Kähler-Einstein metric is equal to a multiple first
Chern class c1(X) of X so Kähler-Einstein metrics can only exist if the first
Chern class c1(X) has definite sign. This is a major topological restriction on
X. If c1(X) is trivial, the famous Calabi-Yau theorem [90] states that there is
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a unique KE metric up to automorphism. In the case c1(X) < 0, Yau proved
that there is a unique KE metric up to scale and automorphisms of X.

The case c1(X) > 0 is more complicated. Matsushima showed that if the
automorphism group of X is not reductive, then X does not admit a Kähler-
Einstein metric. Donaldson-Futaki [37] found another obstruction related to
certain pathological vector fields on X. Yau then posed the problem of relat-
ing the problem of existence of Kähler-Einstein metrics to a stability notion
in algebraic geometry [91]. Ding and Tian proposed K-stability as a conjec-
tural solution to Yau’s problem [24] defined using an ingenious combination
of Futaki’s work with algebraic degenerations of X. Donaldson gave the fully
algebraic definition of K-stability [27], which is used in this work with minor
modifications.

The equivalence between the existence of a Kähler-Einstein metric and
K-stability was proved by Chen, Donaldson and Sun which settled one of the
most famous modern conjectures in geometry. The problem has inspired many
novel ideas, such as the algebraisation of Gromov-Hausdorff limits [30], which
is a technique of endowing a limiting object in Riemannian geometry under
certain hypotheses with the structure of an algebraic variety. The continuity
method for metrics with cone singularities is another new construction that
was crystallised in the work of Chen, Donaldson and Sun. These two key ideas
were beautifully embedded in the proof of the following theorem [29].

Theorem 1.1 ([18, 19, 20, 11]). The pair (X,−KX) is K-stable if and only if
X admits a Kähler-Einstein metric.

1.2.2 The Yau-Tian-Donaldson conjecture for constant
scalar curvature Kähler metrics

Constant scalar curvature Kähler metrics can be defined by the equation

Scal(ω) = C, (1.3)

where Scal(ω) is defined by the equation Scal(ω)ωn = dimX Ric(ω) ∧ ωn−1

with n denoting the dimension of the manifold X, and C is a constant. CscK
metrics on an arbitrary polarised manifold is the first natural generalisation

11



of the Kähler-Einstein YTD correspondence. We say that (X,L) is cscK if
X admits a metric in c1(L) which is cscK. Donaldson made the following
conjecture.

Conjecture 1 (The Yau-Tian-Donaldson conjecture [27]). Let (X,L) be a
polarised smooth complex variety. Then there is a constant scalar curvature
Kähler cscK metric in the class c1(L) if and only if (X,L) is K-polystable.

We refer to Definition 3.5 for the definition of K-polystability.

Remark 1.2. Li-Xu [56] gave an example which contradicted the YTD corre-
spondence as it was originally stated, which included certain pathological test
configurations. The solution offered by Li-Xu was to only consider normal test
configurations. We follow an alternative convention due to Stoppa [79], which
is to allow nonnormal test configurations whose normalisations are not trivial.
Székelyhidi used yet another convention by restricting to test configurations
with positive norm. The final point of view was proven to be equivalent with
the first two by Dervan [22]. The norm and triviality of a test configuration
are defined in Section 3.1.

1.2.3 K-stability of cscK manifolds

Donaldson proved an elegant formula which relates scalar curvature with Donaldson-
Futaki invariants explicitly.

Proposition 1.3 ([28]). Let (X,L, ω) be a polarised Kähler manifold with
2πω = c1(L) and let X be a test configuration for (X,L). The following lower
bound holds for the Calabi functional

‖ Scal(ω)− Scal(ω)‖L2(ωn) ≥ −c
DF(X )

‖X ‖
(1.4)

for some positive constant c independent of the test configuration X and the
Kähler form ω. Here Scal(ω) is the scalar curvature of ω, Scal(ω) is its average,
the norm is taken with respect to integrating with the volume form induced by
ω, and the quantity ‖X ‖ is called the norm of the test configuration X .

In particular, if (X,L) is cscK, then it is K-semistable.

12



Arezzo and Pacard constructed cscK metrics on blowups of points of cscK
manifolds assuming that the volume of the exceptional divisor is small.

Proposition 1.4 ([8]). Let (X,L) be a polarised cscK Kähler manifold with
a discrete automorphism group and let Y be the blowup of a point on X with
p : Y → X being the projection. Then there exists a positive number ε0 such
that there is a constant scalar curvature metric on (Y, p∗L−εE) for 0 < ε < ε0.
Here E is the exceptional divisor on Y .

Stoppa noticed that the Donaldson-Futaki invariant of a particular test
configuration Y on (Y, L − εE), using notation from Proposition 1.4 is equal
to

DF(Y ) = DF(X )− Cε−n+1 +O(ε−n), (1.5)

where DF(Y ) and DF(X ) are the Donaldson-Futaki invariants of Y and X ,
respectively, and C is a positive constant. Stoppa then deduced one implication
of the YTD conjecture.

Proposition 1.5 ([77]). Let (X,L) be a polarised variety with a discrete au-
tomorphism group and assume (X,L) is cscK. Then (X,L) is K-stable.

Finally, Berman proved the K-polystability of an anticanonically polarised
Fano variety admitting a cscK metric [11].

1.2.4 Projective bundles

Producing cscK metrics remains the main method of finding examples of K-
stable varieties since the nonexistence of a test configuration with vanishing
or negative Donaldson-Futaki invariant is difficult to prove otherwise. No
general method for constructing cscK metrics is known either, but partial
results are known in special cases. We believe that eventually the locus of
K-stable polarisations in the Kähler cone of X should yield to an explicit
description, at least in interesting examples. Projective bundles, and slightly
more generally flag bundles, are the simplest nontrivial examples.

We consider the bundle PE over a smooth projective variety B whose fibres
are spaces of 1-dimensional quotients of a holomorphic vector bundle E. Let
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O(1) denote the relative hyperplane bundle on PE, fix a line bundle A on B
and assume that the line bundle

L(A) = O(d)⊗ p∗A. (1.6)

is ample. Using the theory of slope stability and results of Narasimhan and
Sesadri, Ross and Thomas proved that the K-stability of a projective bundle
on a curve is very closely related to the K-stability of the base and the stability
of the underlying vector bundle.

Theorem 1.6 ([63, 68]). Assume that B is of complex dimension one. Then
E is Mumford (semi/poly)stable if (X,L(A)) is slope (semi/poly)stable. If
E is polystable, then (X,L(A)) admits a cscK metric. Conversely, if E is
strictly unstable, then (X,L(A)) does not admit a cscK metric, and if E is not
polystable, then (X,L(A)) is not K-polystable.

Without the assumption on the dimension of B, Ross and Thomas proved
the following theorem using a result of Hong [44],

Theorem 1.7 ([44, 68]). Assume that A is an ample line bundle on B. Then
E is slope stable if there exists an m0 depending on B, A and E such that
(X,L(Am)) is K-stable for m > m0. Conversely, if E is strictly unstable,
then (X,L(A)) does not admit a cscK metric, and if E is not polystable, then
(X,L(A)) is not K-polystable.

Lu and Seyyedali [57] generalised Donaldson’s perturbation method [26]
and constructed extremal metrics in adiabatic classes on projective bundles.
Similar techniques have been used by Seyyedali [74] and [50] to construct
balanced metrics in adiabatic classes on projective bundles. Balanced metrics
and asymptotic Chow stability have a pivotal role in the development of the
theory of K-stability which is eloquently described in [26]. As a general rule,
many of the difficult constructions in the theory of K-stability are usually
known for projective bundles because of their simplicity.

More explicit constructions are carried out on certain simpler projective
bundles by Székelyhidi [82, 84] and Apostolov, Calderbank, Gauduchon and
Tønnesen-Friedman [3, 4, 5]. Apostolov and Tønnesen-Friedman show in par-
ticular that the YTD conjecture holds for geometrically ruled surfaces [6].
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An example of a P1-bundle Y over a product of three high genus curves
with a fascinating property is constructed in [4]. The authors prove an analytic
obstruction to the existence of an extremal metric and then construct the same
obstruction using the theory of slope stability. A priori, slope stability yields
a family of test configurations parametrised by an interval in the rational
numbers, but this can be formally extended to an interval in the reals, where
the obstruction defined in [4] appears. It is widely conjectured that no algebraic
test configuration destabilises the projective bundle Y .

1.2.5 Generalisations of the YTD correspondence

Before stating our results, we briefly list various generalisations of Conjecture
1 that have appeared in the literature. In its most general form, the Yau-Tian-
Donaldson correspondence can be understood to mean the following statement
about the existence of special metrics and stability.

There is a canonical metric (of specified type) in the class c1(L) if and only if
the projective variety (X,L) is K-stable (in the appropriate sense)

The correspondences that are known to us are summarised in the following
list.

(1) The existence of cscK metrics on a smooth polarised variety is equivalent
to K-stability [27]

(2) The existence of extremal metrics on smooth polarised varieties is equiva-
lent to K-stability relative to infinitesimal automorphisms – [82, 80]

(3) The existence of Orbifold cscK metrics on polarised orbifolds is equivalent
to orbifold K-stability [70]

(4) The existence of cscK metrics with cone singularities along a divisor D
on a smooth polarised variety is equivalent to K-stability relative to the
divisor D [29]

(5) The existence of twisted cscK metrics on a smooth polarised variety is
equivalent to twisted K-stability [32, 78, 22]
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1.3 Notation and conventions

Notation

• X, Y,B,C are schemes, dimCC = 1

• E ,F ,G are coherent sheaves.

• E∗ is the dual sheaf of E .

• E,F,Q are vector bundles.

• rE is the rank of the vector bundle E.

• L,L,L and A are line bundles.

• A,B are graded sheaves of OB-algebras which are generated at degree 1.

• F•, G• and H• are filtrations of a vector space or a sheaf.

• Gm is the multiplicative group SpecC[s, s−1], often denoted as C×.

• A1 is the complex affine line SpecC[x].

• Pn is the complex projective space ProjC[x0, . . . , xn].

• ProjB A is the relative proj of A.

• PF is the scheme Proj
⊕∞

k=0 S
kF .

• λ, µ, ν are partitions of positive integers |λ|, |µ| and |ν|, respectively, page
27.

• r is a finite strictly increasing sequence of natural numbers whose largest
entry is smaller than a fixed integer rE, page 29.

• Sλ(E) is the ring
⊕∞

k=0 Ekλ, page 29.

• S(E) is the ring
⊕∞

k=0 E (k), page 30.

• F l r(E) is the flag bundle of r-quotients of E, page 35.

• σrE ,r is the canonical partition corresponding to the integer rE and the
tuple r, 47.

• Bi(E, λ) are Chern classes appearing in the expression for the Chern
character of the bundle Eλ, page 47.
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• Ai(E, λ) are special cases of Bi(E, λ) for λ = (k) for some natural number
k, 49.

• Test(X,L) is the set of test configurations on a polarised scheme (X,L)

40.

• Dλ,rE is the leading coefficient of the Hilbert polynomial of a polarised
flag variety corresponding to the integer rE and the partition λ, 52.

• Nλ
ν,µ are Littlewood-Richardson coefficients, page 61.

• Cg,E,A,λ and DE,λ,L,f are positive coefficients appearing in the expressions
for the Donaldson-Futaki invariant of a flag bundle, pages 65 and 66.

• F•, G• and H• are filtrations, pages 44 and 88.

• FAlgOB is the category of admissibly filtered sheaves of algebras, 89.

Conventions and terminology

• A polarised variety is a pair (X,L), where X is a complex variety and L
an ample line bundle on X.

• A vector bundle is identified with its locally free sheaf of sections

• We use the common abbreviation m� 0, which means that there exists
an m0 such that a statement holds for all m > m0

• Given a sheaf F on B, the fibre F ⊗ k(x) is written as Fx.

• Given a family X → A1, we denote the fibres over closed points of A1

by Xt, where t ∈ A1 and call the fibre X0 the central fibre

• Let h : Z→ Q be a function, whose restriction to Z>k0 for some positive
number k0 agrees with a polynomial. If we only care about the asymp-
totics of h(k) as k tends to infinity, we will replace the function, by its
polynomial and abuse notation by using the same symbol. So a Hilbert
function becomes a Hilbert polynomial, a weight function becomes a
weight polynomial and so on.
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1.4 Statements of selected results

Fix a smooth projective variety B of dimension b with an ample line bundle
L. Let E be an algebraic vector bundle of rank rE over B, r a strictly in-
creasing finite sequence of positive numbers and F l r(E) the bundle of r-flags
of subspaces in E∗. Fix a partition λ = (λ1, . . . , λl) with jumps given by r.
Let Eλ denote the vector bundle obtained from E and the representation of
GL(rE,C) given by λ and let p be the projection from F l r(E) to B and define
the line bundle

Lλ(A) = Lλ ⊗ p∗A, (1.7)

on F l r(E), where A is a line bundle on B and Lλ is the line bundle associated
to the partition λ (cf. Equation (2.43)). We refer to Sections 2.4, 2.5 and 2.6
for details.

We will often make the following assumption on our choice of partition.

Definition 1.8. We say that λ and r satisfy the assumption � if at least one
of the following holds:

(i) the length l(λ) of λ is at most 4 (cf. page 27)

(ii) λ = tσrE ,r for some positive rational number t, where σrE ,r is the canonical
partition defined in Section 4.1

Theorem A (Theorem 5.3, Section 5.2). Let C be a smooth projective curve
of genus g, E an ample vector bundle of rank rE on C and A an ample line
bundle on C.

• If E is slope polystable, then any polarised flag bundle (F l r(E),Lλ(A))

admits a cscK metric. In particular (F l r(E),Lλ(A)) is K-semistable.

• If λ satisfies the assumption � and E is slope unstable, then the flag
variety F l r(E) of r-flags of quotients in E with the polarisation Lλ(A)

is K-unstable. If E is properly semistable, then the pair (F l r(E),Lλ(A))

is properly K-semistable.

• Finally, if E is simple, meaning that it has no nontrivial holomorphic
automorphisms, and g > 1, the YTD correspondence holds for any po-
larisation Lλ(A) where λ satisfies the assumption �. In particular, E is
simple if it is stable.
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Theorem B (Theorem 5.4, Section 5.3). Let E, B and L be as in the beginning
of the section. Assume that r and λ satisfy � and that E is slope unstable. Then
there exists an m0 such that the flag variety F l r(E) of r-flags of quotients in
E with the polarisation Lλ(Lm) is K-unstable for m > m0.

For i between 1 and b, define the cohomology class Bi(E, λ) to be the Chow
degree i term in the expansion

chEλ = rankEλ(1 +B1(E, λ) +B2(E, λ) + · · ·+Bb(E, λ)) (1.8)

of the Chern character of Eλ.

Theorem C (Theorem 4.3, Section 4.1). Let E be as in the beginning of the
section and let λ satisfy the assumption � for some rE and r, then

B1(E, λ) =
c1(λ)

rE
c1(E) (1.9)

and

B2(E, λ) ≡1
h2(λ)h2(E)

rE(rE + 1)
+
c2(λ)c2(E)

rE(rE − 1)
+HλA2(E) + Z. (1.10)

where Z is independent of λ, and hi(λ) and ci(λ) denote the complete symmet-
ric and elementary symmetric polynomials of λ, respectively. We denoted

A2(E) =
rE − 1

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
(1.11)

and
Hλ =

rEc1(λ)−
∑

i(2i− 1)λi
rE − 1

. (1.12)

The notation ≡1 means the following weak numerical equivalence: If U and V
are k-cycles in B, then U ≡1 V if c1(A)n−k.(U − V ) is the zero cycle for all
line bundles A ∈ PicB. We also used ci(λ) and hi(λ) to denote the elementary
and complete symmetric polynomials of degree i for λ.

Theorem D (Theorem 7.3, Chapter 7). Given any positive integers p and d,
there exist a K-unstable hypersurface of degree d in a Grassmannian bundle of
p-planes in a vector bundle on a smooth complex curve.
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In Chapter 8 we define the notion of relative K-stability and generalise a
correspondence between filtrations and test configuration to this context [85].
Let p : Y → B be a projective morphism and L a relatively ample line bundle
on Y . The definitions and the precise statements of the following two theorems
is found in Chapter 8.

Theorem E (Theorem 8.26, Section 8.2). There is a 1-1 correspondence be-
tween p-relative test configurations up to a natural identification and admissible
finitely generated filtrations of the algebra

⊕∞
k=0 p∗Lk.

Theorem F (Theorem 8.37, Section 8.3). Without fixing a relatively ample
line bundle, set of p-test configurations for Y is, up to natural identifications,
has a convex structure which fibres naturally over the cone of relatively ample
polarisations. Moreover, the Donaldson-Futaki invariant is continuous in the
variation of the convex combination.

Remark 1.9. The statements of Theorem E and Theorem F specialise to usual
test configurations if we take B to be a point.

Theorem E and Theorem F immediately imply the following result, which
we also believe to be new.

Theorem G (Theorem 8.38). Let X be a projective variety over the complex
numbers. Then the locus of line bundles which are K-unstable is open in the
cone of ample Q-line bundles with respect to the Euclidean topology.
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Chapter 2

Preliminaries

This chapter reviews preliminary material. We briefly review background on
geometric invariant theory in Sections 2.1 and Sections 2.2. Sections 2.3 recalls
the definition of Mumford stability of vector bundles and the Narasimhan-
Seshadri extension of the Uniformisation Theorem to vector bundles. Sec-
tions 2.4, Sections 2.5 and Sections 2.6 review preliminaries on flag varieties
and their relative counterpart, flag bundles.

2.1 Group actions and linearisations

In this section we recall basic notions of group actions on complex projective
varieties [46, Section 4.2]. In particular, we briefly describe the equivariant set-
up for flag bundles and families of projective varieties over A1, which we will
use in later sections. Let X be a complex projective scheme with a G-action,
that is a regular map

ρ : X ×G→ X (2.1)

The schemeX together with the action ρ is called aG-scheme. This notion also
extends to sheaves on X. Let F be a coherent sheaf on X. A G-linearisation of
F is an isomorphism of OX×G-sheaves Φ : ρ∗F → p∗1F satisfying the condition

(idX ×µ)∗Φ = p∗12Φ ◦ (σ × idG)∗Φ, (2.2)

where p12 denotes the projection p12 : X ×G×G→ X ×G onto the first two
factors. A G-linearisation on F induces an action on the schemes functorially
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constructed from F . A G-linearised sheaf is often referred to simply as a G-
sheaf. If we assume that F is locally free and denote the total space of F by
F , linearisations are equivalent to G-actions on F whose projections F → X

are equivariant and restrict to linear isomorphisms

Fx ∼= Fρ(x,g) (2.3)

for all (x, g) ∈ X ×G. A polarised G-variety (X,L) is a G-variety X with an
ample line bundle with a G-linearisation.

The most important actions in the theory of K-stability are ones by the
complex multiplicative group Gm.

Example 2.1 (Actions of the multiplicative group on polarised varieties).
Consider an action of the multiplicative group Gm over C on a projective
variety (X,L), where L is a very ample line bundle. Let R be the ring
H0(X,

⊕∞
k=0 L

k). Then the Gm-linearisation on the line bundle L determines
a representation of the group Gm on the vector space H0(X,Lk) for all k ≥ 0

by setting
s.f(x) = f(s−1x) (2.4)

for all s ∈ Gm, x ∈ X and f ∈ H0(X,Lk). This determines a homomorphism

h : R→ R[s] (2.5)

by sending
f 7→ s−w(f)f (2.6)

for any f which lies the space of weight −w(f) elements of the representa-
tion. If we extend this map linearly, it follows from Equation (2.4) that the
homomorphism h preserves the grading on R. Conversely, any Gm-action on a
very amply polarised complex scheme arises from a homomorphism R→ R[s],
where R is a graded algebra.

Another way to describe the map h is by lifting the Gm-action to an action
on the affine cone [62]

SpecR×Gm → SpecR, (2.7)

which by definition corresponds uniquely to a homomorphism

R→ R[s, s−1]. (2.8)
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Lemma 2.2. Given a G-sheaf F , the Schur powers and shape algebras of
the sheaf are G-sheaves. Moreover, if A is a sheaf of OX-algebras with a G-
linearisation which respects the algebra structure, the relative Spec construction
yields a G-scheme Y such that the natural morphism Y → X is G-invariant.
If A is graded, the same statement is true for the relative Proj where the
O(1)-line bundle comes with a natural linearisation of the action.

Proof. The Schur power part of the statement follows as tensor algebras of
linearised sheaves have natural induced linearisations. We refer to [46, pp. 94-
95] for the remaining statements whose proofs are straightforward verifications.

2.2 Geometric invariant theory

We review aspects of Mumford’s geometric invariant theory (GIT). The books
[62] and [61] have been an invaluable reference, and contain the germs of many
ideas contained in this work and in the theory K-stability at large.

The idea of stability appears when one attempts to form quotients in the
category of quasi-projective varieties. Mumford realised that given an action of
an algebraic group G on a polarised variety (X,L), there is a G-invariant open
subset Xs of stable locus such that the orbit set Xs/G can be given a natural
structure of a quasiprojective variety. Moreover, the Zariski closure of Xs/G

can be naturally identified with a quotient of a larger set Xss of semistable
locus by G. This construction is called the GIT quotient of X by G and it
depends on a choice of G-linearisation on the line bundle L.

We begin with the definition of stability for linear representations. Suppose
G is a complex algebraic group with a linear representation V . We say that a
point p ∈ V is

• stable if 0 6∈ G.p and StabG(p) is finite,

• semistable if 0 6∈ G.p and

• unstable if 0 ∈ G.p.

For any x ∈ PV , we say that x is stable, semistable or unstable if some (and
hence each) nonzero lift of x to V is.
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There is an induced action of G on the vector spaces H0(X,Lk) for all
k ∈ N given by

(g.s)(p) = s(g−1p) (2.9)

for s ∈ H0(X,Lk) and p ∈ X.

Definition 2.3. Let x be a point in a scheme X with an ample line bundle L.

• x is stable (with respect to a chosen linearisation) if there is an invariant
section s ∈ H0(X,Lk) for some k ∈ N such that the open set Us = {x :

s(x) 6= 0} is affine and invariant, and the orbits of closed points in Us

are closed.

• x is polystable if there is an invariant section s ∈ H0(X,Lk) for some
k ∈ N such that the open set Us = {x : s(x) 6= 0} is affine and invariant,
and the orbits of closed points in Us are closed in the semistable locus,

• x is semi-stable if there is an invariant section s ∈ H0(X,Lk) for some
k ∈ N such that the open set Us = {x : s(x) 6= 0} is affine and invariant
and

• x is unstable otherwise.

One parameter subgroups and the Hilbert-Mumford criterion Mum-
ford discovered a powerful criterion for determining whether a point is stable
in the sense of Definition 2.3. A one parameter subgroup (1-PS) of a complex
algebraic group G is a homomorphism χ : Gm → G. Assume that G acts on
X and that ρ : X × G → X is proper. Given a point x ∈ X, one parameter
subgroup χ determines a morphism

f : A1 → X (2.10)

which maps x to a point in the closure of the orbit of χ. Then the induced
Gm-linearisation of the action ρ ◦ χ on L restricts to a character of Gm on the
complex line f ∗L

∣∣
{0}. Let χ(t) = tr be this character and define the integer

µL(x, χ) = −r. (2.11)
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Proposition 2.4 (The Hilbert-Mumford criterion). Let X,L,G and ρ be as
above and x a point in X. Then

• x is stable if and only if µL(x, χ) > 0 for all 1-PS χ.

• x is semistable if and only if µL(x, χ) ≥ 0 for all 1-PS χ

• x is unstable otherwise.

Remark 2.5 (Stability of varieties). The Hilbert scheme and the Chow scheme
are two constructions, which are powerful tools in the study of families of pro-
jective varieties. They enable us to identify a projective scheme (X,L) with a
fixed embedding P(H0(X,Lr)∗) as a point in a parameter scheme. The choice
of basis on P(H0(X,Lr)∗) implies a natural GIT problem for Hilbert and Chow
stability, whose solution ultimately depends on understanding the Hilbert-
Mumford criterion on certain Grassmannians into which both the Hilbert
scheme and the Chow scheme are embedded.

The stability of (X,L), in either the Hilbert scheme or the Chow scheme,
depends on the parameter r. Mumford suggested study of asymptotic stability,
or whether there exists an r0 such that (X,L) is stable for r > r0. Mabuchi
proved the equivalence of asymptotic Hilbert stability and asymptotic Chow
stability in [59]. K-stability, which will be defined in Chapter 3, is a mi-
nor modification on the Hilbert-Mumford criterion for asymptotic stability of
(X,L).

2.3 Stability of vector bundles

Let E be a coherent sheaf of rank rE on a smooth projective variety B. Define
the determinant of E by

det E = (
∧e
E)∗∗. (2.12)

The define first Chern class by c1(det E), and the degree and the slope of E by

deg E =

∫
X

c1(E).c1(L)n−1. (2.13)

and
µE = deg E/ rank E , (2.14)
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respectively. If E is locally free in a subset U ⊂ B whose complement is con-
tained in a codimension 2 subscheme, we say that E is locally free in codimen-
sion 2. In this case the first Chern class of E can defined to be the pushforward

c1(E) = (iU)∗c1(E
∣∣
U

), (2.15)

where
i : U → B (2.16)

is the inclusion.
Let TF(E) denote the set of torsion free subsheaves F of E with 0 <

rankF < rank E [51].

Definition 2.6 (Mumford-Takemoto slope stability [46, Definition 1.2.12]).
Let E be a vector bundle. We say that E is

• slope stable if µF < µE for all F ∈ TF(E)

• slope polystable if µF ≤ µE for all F ∈ TF(E) and in the case of equality,
E is a direct sum F ⊕Q with µF = µQ,

• slope semistable if µF ≤ µE for all F ∈ TF(E) and

• slope unstable otherwise.

A torsion free subsheaf F with µF > µE is called a destabilising subsheaf.

The following generalisation of the Uniformisation theorem holds for polystable
vector bundles on Riemann surfaces.

Proposition 2.7 ([51, Theorem 2.7]). A vector bundle E of rank rE on a
Riemann surface Σ is slope polystable if and only if it admits a projectively
flat structure, that is the associated PGL(C, rankE)-bundle E is flat, meaning
that it arises from a representation

ρ : π1(Σ)→ PGL(rE,C) (2.17)

of the fundamental group π1(Σ) of Σ as the quotient

E = Σ̃×ρ PGL(rE,C). (2.18)
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Remark 2.8 (The Hitchin-Kobayashi correspondence). If E is a vector bundle
and h is a Hermitian metric with curvature Fh, we say that h is Hermitian-
Einstein if it satisfies √

−1ΛωFh = µE idE, (2.19)

where Λω is the dual of the Lefschetz operator [45, pp. 114-115].
The YTD correspondence is closely related to a result which relates the

existence special connections on vector bundles to Mumford stability. This is
called the Hitchin-Kobayashi correspondence proved by Narasimhan-Seshadri
[63], Donaldson [25] and Uhlenbeck-Yau [87]. It states that a Hermitian vector
bundle E on a projective manifold (M,L) admits a Hermitian-Einstein metric
if and only if it is Mumford stable.

2.4 Schur functors

We define Schur functors using the classical formulation in terms of Young
symmetrisers. Let A be a finitely generated Q-algebra and M is a finite A-
module of dimension dM .

A partition λ = (λ1, . . . , λl) is a finite nonincreasing sequence of natural
numbers. Define the length l(λ) = l and the area |λ| =

∑l
i=1 λi of λ. Also

define the natural operations on partitions. Let λ and µ be partitions of equal
length and let k and n be a natural numbers. Define

• the componentwise sum λ+ µ,

• the componentwise product λµ,

• the sum and product with a natural number, understood to be a constant
partition of the correct length, and

• repeated indices (kn) := (k, . . . , k︸ ︷︷ ︸
n

).

A partition λ is uniquely represented by a Young diagram Dλ consisting of
λi boxes in the ith row. Define the conjugate partition of λ to be the partition
λ′ represented by the Young diagram obtained from Dλ via reflection in the
diagonal axis of reflection starting from the top left corner. In other words,
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the difference between Dλ and Dλ′ is that the roles of rows and columns are
reversed.

7→

Example of conjugating the partition λ = (4, 2, 1) by a reflection of its Young
diagram.

Definition 2.9. Let A be a ring containing Q, let λ be a partition such that
d = |λ| and denote I = (i1, . . . , id). Consider the dth tensor power of M and
let mi1 , . . . ,mid be elements of M . Denote mI = mi1 ⊗ · · · ⊗mi|λ| and define
map

cλ : mI 7→
1

dλ

∑
σ,τ

(sgnτ)mσ◦τ(I), (2.20)

called the Young symmetriser. The rational number dλ is chosen so that cλ
is idempotent. This requirement fixes dλ uniquely. Explicitly, we have dλ =

dM !/ dimMλ.
The summation is taken over all σ (τ , respectively) which preserve the rows

(columns) of the diagram. Define the Schur power Mλ of M associated to the
partition λ by

Mλ = cλ
(
M⊗ |λ|) . (2.21)

Remark 2.10. The proof that the rational number dλ exists can be found in
[36, Theorem 4.3].

Lemma 2.11. The Schur power construction is a functor from the category
of A-modules to itself and it commutes with change of base. We use the term
Schur functor synonymously with the term Schur power.

Proof. Let M and N be A-modules and let f : M → N be a homomorphism.
Then the natural homomorphism fλ defined as restriction of

m1 ⊗ · · · ⊗md 7→ f(m1)⊗ · · · ⊗ f(md) (2.22)
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is well defined as a map Mλ → Nλ. It is clear that this construction respects
identity and composition.

Tensor powers commute with base change so the same is true for Schur
powers.

In particular, Schur powers are therefore defined on the category of coherent
sheaves on schemes.

Definition 2.12. Given a quasicoherent sheaf F and a partition λ, we define
the Schur power Fλ to be the quasicoherent sheaf locally obtained by Definition
2.9.

To be more explicit, let {Uα} an open affine cover of B such that F
∣∣
Uα

is the quasicoherent sheaf corresponding to a OB(Uα)-module. We define Fλ,
the Schur power of F for the partition λ, by its restrictions to Fλ

∣∣
Uα
. The

transition maps are induced by localisation and functoriality. Denote the Schur
power of F by Fλ.

Definition 2.13. If r is a finite increasing sequence of natural numbers and λ
is a partition, we say that the jumps of λ are given by r if λi > λi+1 precisely
at indices i belonging to r with the additional requirement that λe is zero for
some integer rE. Later, the integer rE will be taken to be the dimension of a
fixed vector space or the rank rE of a fixed vector bundle E. Denote the set
of such partitions by P(r).

The following algebra is at the centre of a relationship between geometry,
algebra and representation theory that we make use of in later chapters.

Definition 2.14 (Algebra structure [86]). Given an A-module M we define
the universal shape algebra

S(M) =
⊕
λ

Mλ (2.23)

where the summation is over all partitions λ and the ring structure is defined
by the projection

mλ⊗mµ 7→ d−1
λ+µcλ+µ(mλ⊗mµ). (2.24)

for any mλ ∈Mλ and mµ ∈Mµ.
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We also define two natural subalgebras of S(M). Given any partition λ,
we define the Z-graded subalgebra

Sλ(M) =
⊕
k=0

Mkλ = A⊕Mλ ⊕M2λ ⊕ · · · (2.25)

called the shape algebra of M for the partition λ. In the case λ = (k) we
simply write

S(k)(M) = S(M) (2.26)

for the symmetric algebra of M . Given a finite strictly increasing sequence of
natural numbers r, we define the Zc-graded subalgebra

Sr(M) =
⊕
ν∈P(r)

Mν (2.27)

called the total coordinate ring of the scheme of r-flags in M .
The terminology is justified in Section 2.5 and Section 2.6.

Proposition 2.15. The algebras S(M), Sλ(M) and Sr(M) are associative
and commutative A-algebras. The algebra Sλ(M) is finitely generated as an
A-algebra.

Proof. Associativity and commutativity follow directly from the properties of
the Young symmetriser. Finite generation is clear since Sλ(M) is generated in
degree one.

Example 2.16 (Examples of Schur functors in the category of coherent sheaves).
Let E be a coherent sheaf on an integral scheme B. Define the rank e = rank E
of E to be the dimension of the fibre of E over the generic point of B [43, p.
74]. We define the determinant of E by

det E = E (1rE ), (2.28)

which we also denote by
∧e E , and the symmetric power of E by

SkE = E (k). (2.29)

Remark 2.17 (Schur functors for vector bundles). If E is a locally free sheaf,
then there is a convenient description of the Schur power. Let E be the frame
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bundle of the vector bundle corresponding to E with fibre GL(V ), where V is
a dimension rankE complex vector space. Then we may define Eλ to be the
sheaf of sections of the vector bundle

E×G V λ. (2.30)

Remark 2.18. Either from Remark 2.17 or from the definition of a Schur func-
tor, we see that Eλ⊗Lc1(λ) = (E⊗L)λ, where c1(λ) is the sum

∑l
i=1 λi.

The following proposition will be important for applying the standard con-
structions of algebraic geometry to shape algebras.

Proposition 2.19 (Positivity of Schur powers [41]). If the vector bundle E is
ample, then the Schur power Eλ is ample for any partition λ.

2.5 Flag varieties

In this section we present a short introduction to classical flag varieties and
the Borel-Weil theorem for the general linear group, which relates the space of
sections of an equivariant line bundle on a flag variety to a representation of
the general linear group. Our main reference is Weyman’s book, but we use a
dual convention for partitions [88, Chapters 2 and 3].

Given a vector (r1, . . . , rc) of strictly increasing integers, we define an r-flag
of quotients of a vector space V to be a sequence

V → Vc → Vc−1 → · · · → V1 → 0 (2.31)

of successive quotients where dimVi = ri which we assume not to be injective
for all i. Dually, this corresponds to a sequence

0 ⊂ V ∗1 ⊂ · · · ⊂ V ∗c ⊂ V ∗ (2.32)

of nested subspaces. We make the assumption that the largest element of r is
smaller than dimV from now on without further mention.
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Let G = GL(e,C) and consider the subgroup of matrices of the form
B1 ∗ ∗ · · · ∗
0 B2 ∗ · · · ∗
...

...
...

...
...

0 0 0 Bc ∗
0 0 0 0 Bc+1

 , (2.33)

where Bi is in GL(ri − ri−1,C) and the entries marked with ∗ are arbitrary.
Matrices of this form is the isotropy subgroup Pr ⊂ G of a flag of coordinate
subspaces

0 = 〈e1, . . . , er1〉 ⊂ 〈e1, . . . , er2〉 ⊂ · · · ⊂ 〈e1, . . . , erc〉 ⊂ Ce. (2.34)

Let V be a vector space of dimension rE and r a properly increasing se-
quence of positive integers. A classical flag variety F l r(V ) is the set of all
possible nested subspaces

0 = Vr1 ⊂ Vr2 ⊂ · · · ⊂ Vrc ⊂ Vrc+1 = V ∗ (2.35)

where dimVrj = rj for all j. The set of flags of this type has the structure
of a homogeneous space G/Pr where Pr is the stabiliser of the flag in Equa-
tion (2.34).

Remark 2.20. There is a 1-1 correspondence between quotients and subspaces
of the complementary dimension. Dualising V in Equation (2.35) corresponds
to working with quotients of V instead of subspaces.

The Plücker embedding, which sends each plane spanned by vectors v1, . . . , vrj ∈
V ∗ to the point [v1 ∧ · · · ∧ vrj ] ∈ P(ΛrjV ), determines an embedding from the
flag variety F l r(V ) to the product of projective spaces

P = P(Λr1V )× · · · × P(ΛrcV ). (2.36)

The image is cut out by incidence relations determined by Equation (2.35)
and quadratic relations on each of the factors P(ΛrjV ). The coordinate ring
of F l r(V ) can be beautifully written in terms of Schur functors as follows.
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Proposition 2.21 ([88, Proposition 3.1.9]). Equip the coordinate ring of P
with its standard Nc-grading. Then the (s1, . . . , sc)-component of the multi-
graded coordinate ring C[F l r(V )] is isomorphic to the Schur module V λ, where
the conjugate of λ satisfies

λ′ = (rscc , . . . , r
s1
1 ). (2.37)

Another way to write this proposition is by using the Borel-Weil theorem,
which we state in the case of an ample line bundle on a flag variety of the
general linear group. Let λ be a partition of length l < e. Then we can define
a subgroup Pr of G by letting r be the set of indices i such that λi < λi+1.
Define the line bundle Lλ by

Lλ = p∗1OP(Λr1V )(s1)⊗ · · · ⊗ p∗cOP(ΛrcV )(sc), (2.38)

where the si are determined by the requirement λ′ = (rs11 , . . . , r
sc
c ). Then the

classical Borel-Weil theorem [72, Théorème 4.], [13, Proposition 10.2] implies
that

H0(F l r(V ),Lλ) = V λ (2.39)

for si > 0.

Remark 2.22. A basic fact is that the tensor product of two line bundles Lλ
and Lµ indexed by partitions is given by

Lλ⊗Lµ = Lλ+µ. (2.40)

Note that only globally generated line bundles can be written using partitions.
Formally, it is common to denote the dual of a line bundle Lλ by L−λ (cf. the
proof of Proposition 7.4).

2.6 Flag bundles and the Borel-Weil Theorem

Let B be a projective scheme and let E be a vector bundle of rank rE on B.

Definition 2.23. Let G be a group. A (Zariski locally trivial) principal G-
bundle over B is a morphism p : Y → B such that

• Y is equipped with a G-action under which p an invariant map, and
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• there exists a Zariski open cover {Ui}i∈I with an isomorphism tip
−1Ui ∼=

G × Ui for all i ∈ I such that G acts by left translation on itself and
trivially on Ui.

Let E be the frame bundle of E constructed as follows. Let U1, . . . , UN be
open subsets of B such that

N⋃
i=1

Ui = B (2.41)

and E
∣∣
Ui
∼= Ui×Ce and define E to be the principal GL(rE,C)-bundle obtained

from the collection U × GL(rE,C) with the same transition functions as E.
The natural GL(rE,C)-action on E is algebraic.

Define the relative flag variety or flag bundle F l r(E) to be the quotient
E/Pr and let pr : F l r(E)→ B be the projection. We often refer to F l r(E) as
simply the flag variety of E of r-quotients.

There is a sequence of tautological vector bundles

0 = R0 ⊂ R1 ⊂ · · · ⊂ Rc ⊂ Rc+1 = p∗rE
∗, (2.42)

on F l r(E), where rankRi = rt−i. The fibre of Ri at x ∈ F l r(E) is the ri-plane
in E∗ determined by x.

Define the line bundle Lλ on F l r(E) to be the pullback of the Πc
i=1p

∗
iO(si)

line bundle on
F l r(E) ↪→ P(Λr1E)× · · · × P(ΛrcE), (2.43)

which can also be written as the line bundle

(detR1)s1 ⊗ · · · ⊗ (detRc)
sc (2.44)

with the same relationship between the si and λ as in Equation 2.38.
The Borel-Weil-Bott theorem computes the cohomology of vector bundles

which can be written as tensor products of Schur powers of the successive
quotients Ri/Ri−1 for i = 1, . . . , t+1, with the vector bundle Rt+1 understood
to be p∗E. We state the theorem for line bundles Lλ, where λ is a partition
whose jumps are given by r.

Proposition 2.24 ([88, Theorem 4.1.4)]). Let λ be a partition in P(r), and
r and s are as above. In other words, λi > λi−1 if and only if the index i is
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contained in r, in which case λi−λi−1 = st−i. The derived pushforwards of Lλ
satisfy

p∗Lλ = Eλ, (2.45)

and
Rip∗Lλ = 0, (2.46)

for i > 0.

Remark 2.25. Since the conjugate of a partition λ ∈ P(r) can be written as(
rscc , r

sc−1

c−1 , . . . , r
s1
1

)
for some positive integers s1, . . . , sc, we have

λ =
(
Sc

r1 , Sr2−r1c−1 , . . . , S
rc−rc−1

1

)
, (2.47)

where Sn =
∑n

i=1 si.

Remark 2.26 (The coordinate algebra of a flag bundle). The shape algebra
of a vector bundle is defined by functoriality and Definition 2.14. An explicit
description of the generators and relations of the sheaf of shape algebras locally
shows that it is isomorphic to the sheaf of algebras determined by the Plücker
embedding. In other words the flag bundle F l r(E) is isomorphic to a relative
projectivisation

ProjB Sλ(E) (2.48)

of the shape algebra. The consequence of this is that the algebra S(E) is the
relative analogue of a total coordinate ring.

We are not aware of a reference for the above statements, but it follows
from the local statement [34, Chapter 9]. If F l r(Ep) is a flag fibre over a point
p ∈ B, then the equations of F l r(Ep) inside P(Eλ

p ) extend to a neighborhood
of p where E is a trivial vector bundle. By taking the sheaf of ideals generated
locally in this way we get the relations of Sλ(E) inside Sk(Eλ).

Viewing a flag bundle as a relative projectivisation of a shape algebra im-
plies a natural generalisation to arbitrary coherent OB-modules.

Definition 2.27. If E is a coherent OB-module, we define the relative scheme
of r-flags (or relative flag scheme)

F l r(E) = ProjB Sλ(E). (2.49)
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It is naturally endowed with a relatively ample line bundle, determined by the
pair (E , λ), which we also denote by Lλ. We refer to this line bundle simply
the Serre line bundle on F l r(E) if λ is clear from context.

The statement of the following Lemma holds more generally [43, Proposi-
tion II.7.10], but we prove a special case to spell out the relationship between
the line bundle Lλ and the projective embeddings of F l r(E).

Lemma 2.28. Let E be a vector bundle of OB-algebras and let Sλ(E) be a
shape algebra for the partition λ and let p be the projection F l r(E) → B.
There exists an m0 such that the line bundle Lλ(Lm) is ample for m � 0.
Morever, if E itself is ample, then Lλ is ample.

Proof. Assume that E is a vector bundle on B. For any k > 0 and m > kc1(λ)

we have a natural isomorphism

(F l r(E),Lλ(Lm)) ∼= (F l r(E ⊗ Lk),Lλ(L)(Lm−kc1(λ))). (2.50)

The vector bundles
∧ri(E⊗Lk) are ample for all i = 1, . . . , c by [41, Corollary

5.3], so the hyperplane bundles on P(
∧ri(E ⊗ Lk)) are ample for i = 1, . . . , c.

We can regard the pair (F l r(E),Lλ(Lm)) as a subvariety in the product

P = P(
∧r1

(E ⊗ Lk))× · · · × P(
∧rs

(E ⊗ Lk)), (2.51)

where the line bundle Lλ(Lm) is the restriction of

OP(s1, . . . , sc)⊗ p∗Lm (2.52)

which is ample. The map p is the projection p : P → B. The second claim
follows from the same proof with m = 0.

Lemma 2.29. The Picard group of a flag bundle F l r(E) is generated by line
bundles of the form Lλ(A), where A is a line bundle on B and the partition λ
is in P(r).

Proof. This proof goes along the same lines as [88, Proposition 4.1.3].

Lemma 2.2 applies to flag bundles of G-linearised vector bundles.
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Proposition 2.30. Let E be a G-linearised coherent OB-module of rank rE on
a G-variety B and let λ be a partition. Then the affine relative flag scheme

SpecX Sλ(F) (2.53)

and the relative flag scheme

ProjX Sλ(F) (2.54)

are G-schemes. The relatively ample line bundle Lλ comes with a natural G-
linearisation.

Proof. The diagram

Eλ
x ⊗ Eµ

x Eλ+µ
x

Eλ
ρ(x,g) ⊗ E

µ
ρ(x,g) Eλ+µ

ρ(x,g)

clearly commutes so the algebra Sλ(E) is a sheaf of G-algebras with a lineariza-
tion that preserves the grading. Hence, Lemma 2.2 implies that the scheme
(Proj,Lλ) has a p-invariant Gm-action.

Remark 2.31 (The functorial definition of flag schemes). One may also define
an object we call the flag-quot scheme Drap(r, E), which represents a functor
from the category of schemes to the category of sets defined by

T 7→


locally free quotients

OT ⊗E → Q1 → · · · → Qc → 0

on B × T with ranks given by r.

 (2.55)

We believe the scheme F l r(E) is isomorphic to Drap(r, E).
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Chapter 3

A review of K-stability

This chapter reviews the preliminaries for the study of K-stability. In Sec-
tion 3.1 we define K-stability following Donaldson [27] with a refinement due
to Li-Xu, Stoppa and Székelyhidi [56, 79, 85]. In Section 3.2 we give a self-
contained introduction to test configurations with the aim of providing back-
ground for Chapter 8. Eisenbud’s book [31] was a valuable reference for Section
3.2.

3.1 K-stability

K-stability is given in terms of the following abstraction of the Hilbert-Mumford
criterion defined in Section 2.2.

Definition 3.1. [27, Definition 2.1.1] Let X be a smooth projective variety
with an ample polarisation L. A test configuration for the polarised variety
(X,L) is given by the following data:

• a flat morphism π : X → A1 of schemes together with an isomorphism
π−1{1} ∼= X,

• an f -ample line bundle L on X such that the isomorphism given above
lifts to an isomorphism between L

∣∣
X1

∼= Lr for some positive integer r,
where X1 denotes the fibre π−1{1}, and

• an L -linearised action ρ : Gm ×X → X on X that covers the usual
action on A1.
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The integer r is called the exponent of the test configuration. The fibre f−1{0}
is called the central fibre.

Remark 3.2. We will often refer to a test configuration simply by the scheme
X if the rest of the triple (X ,L , ρ) is either irrelevant to the discussion or
clear from the context.

Definition 3.3. Let (X,L) be a polarised Gm-variety where the action is
denoted by α. Then the natural action on the product X × A1 given by
s.(x, y) = (s.x, sy), for (s, x, y) ∈ Gm×X ×A1, is called a product test config-
uration and denoted by Xα.

We also say that a test configuration X is almost trivial if the normalisation
of X is Gm-equivariantly isomorphic to a product test configuration induced
from a trivial action.

Let (X ,L , ρ) be a test configuration. Then the pair (X0,L0) is a Gm-
scheme, which induces a Gm-representation on the vector space H0(X0,L k

0 ).
We define the total weight to be the trace of the infinitesimal generator Ak of
the Gm-representation on H0(X0,L k

0 ). Alternatively, the total weight can be
defined to be the weight of the Gm-action on the vector space detH0(X0,L0).
In order to define the norm of a test configuration we also define the trace
squared function as the trace of the square of the infinitesimal generator Ak.

Lemma 3.4. [28] There exist numbers a0, a1, b0, b1 and c0 such that for k
sufficiently large we have

h(k) := χ(Z,Λk) = a0k
n + a1k

n−1 +O(kn−2), (3.1)

w(k) := tr(Ak) = b0k
n+1 + b1k

n +O(kn−1), (3.2)

and

d(k) := tr(A2
k) = c0k

n+2 +O(kn). (3.3)

We call the three functions h(k), w(k) and d(k) defined in Equation (3.1) the
Hilbert function, weight function and the trace squared function, respectively,
following [21].
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Following Donaldson, we define Donaldson-Futaki invariant of (X ,L , ρ)

by

DF(X ) =
b0a1 − a0b1

a2
0

. (3.4)

Define the norm ‖X ‖ of a test configuration X for (Z,Λ) with exponent
r by

‖X ‖ = r−n−2

(
c0 −

b2
0

a0

)
. (3.5)

Definition 3.5. Let Test(X,L) denote the set of test configurations of (X,L)

which are not almost trivial. We say that (X,L) is

• K-stable if DF(X ) > 0 for all X ∈ Test(X,L),

• K-polystable if DF(X ) ≥ 0 for all X ∈ Test(X,L) and DF(X ) = 0

implies that X is a product test configuration,

• K-semistable if DF(X ) ≥ 0 for all X ∈ Test(X,L),

• properly K-semistable if (X,L) is K-semistable but not K-polystable, and

• K-unstable (X,L) is not K-semistable.

If a test configuration X contradicts any of the first three properties, we say
that X is destabilising.

Remark 3.6 (Complements). Examples of all of the above notions are known
in the strict sense. Any cscK projective manifold which admits infinitesimal
automorphisms is at most strictly K-polystable. Keller gave examples of prop-
erly K-semistable ruled manifolds [50, 49]. Slope unstable vector bundles on
curves have K-unstable projectivisations (cf. Chapter 5). Thus, examples of
all stability phenomena can already be found in the case of projective bundles.

Remark 3.7 (Invariance of K-stability under scaling). K-stability is well-defined
in the cone of polarisations

V(X) = Amp(X)/Q>0, (3.6)

where Amp(X) is the cone of ample line bundles with rational coefficients.
Replacing a Kähler form ω by a multiple kω scales the cohomology class by
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the same multiple k and preserves constant scalar curvature metrics. Therefore
being cscK is well defined in the projectivised Kähler cone as well.

We may also rescale the action by replacing X by a pullback under a
covering map t 7→ tr of A1 = SpecC[t]. This has the effect of changing the
weight function by a multiple of the Hilbert polynomial, which does not affect
the Futaki invariant.

Remark 3.8 (K-stability and the Kähler cone). A natural way to approach the
YTD correspondence is to compare the loci of K-polystable and cscK points in
V(B). If we assume that Aut(X) is discrete it follows from the work of LeBrun
and Simanca [55] that the cscK locus is open in the Euclidean topology. Not
much is known about the K-stable locus in general.

We return to the question of variation of the polarisation in Section 8.3.

We would like to thank Dervan for pointing out the following example [23].

Example 3.9 (Explicit K-stable and K-unstable regions on blowups.). Let X
be a blowup of P2 at 8 points with the polarisation La = 3H−E1−a

∑8
i=2Ei,

where H is the hyperplane divisor and E1, . . . , E8 are the exceptional divisors
and a ∈ R>0. Dervan showed, building on the work of Odaka-Sano [66], that
(X,La) is K-stable for

1

9
(10−

√
10) < a <

1

9
(
√

10− 2). (3.7)

Furthermore, by results of Ross and Thomas [68, Example 5.30], there exists
an a0 > 0 such that (X,La) is K-unstable for 0 < a < a0.

Example 3.10 (K-stable and K-unstable polarisations on a ruled threefold.).
Keller gave an example of a ruled threefold where there exist both K-stable
and K-unstable polarisations [48, Theorem 6.1.1]. The K-stable examples are
constructed using results of Hong [44], Arezzo-Pacard [9] and Stoppa [77],
while the unstable examples are obtained by an explicit calculation of Futaki
invariants somewhat similar to that done in Chapter 5.

Remark 3.11. It is also natural to study real polarisations which may not define
a line bundle, parametrised by

V(B)R = Amp(B)⊗R/R>0. (3.8)
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While Definition 3.5 gave does not make sense for irrational polarisations, for
example the theory of slope stability due to Ross and Thomas does [68]. Chap-
ter 8 gives a method for parametrising test configurations along line segments
of V(B) where it may be possible to make sense of the irrational points.

3.2 An introduction to test configurations

A test configuration can be embedded into a projective space by Kodaira maps
of powers of the polarisation. Let (X ,L ) be a test configuration for (X,L).
By Remark 3.7 we may assume that L is very ample and that the exponent
of (X ,L ) is 1. Then we have an embedding ι such that the diagram

X P (π∗L )

A1

ι

π

commutes. It follows by [28, Lemma 2] that there is an equivariant embedding

X ↪→ Pn × A1, (3.9)

where the usual Gm-action on A1 is lifted to an action on the pair (Pn,O(1)).

Remark 3.12. A tacit identification (X,L) ∼= (X1,L1) is always made when
choosing a test configuration.

In the following example we will give a description of the degeneration
beginning with the projective embedding.

Example 3.13 (Test configurations embedded in projective space (cf. Exam-
ple 2.1)). Consider the projective scheme (X,L) associated to a graded ring
A = R/I, where

R = C[x0, . . . , xn] (3.10)

and I is an ideal generated by homogeneous elements of R. Let

ϕ : R⊗C[t, 1
t
]→ R⊗C[t, 1

t
]⊗C[s, 1

s
] (3.11)
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be a homomorphism determined

ϕ(xi) = s−wixi, for i = 0, . . . , n (3.12)

ϕ(t) = s−1t (3.13)

where the integer wi is called the weight of the variable xi in the (co)action
ϕ. We assume that all weights are nonnegative without loss of generality.
Similarly define the weight of a monomial xα1

1 · · ·xαnn to be α1w1 + · · ·+αnwn,
and the initial term in(f) of f ∈ R to be the sum of terms of highest weight
in t in f .

Define a family
X ×Gm ⊂ Pn ×Gm (3.14)

whose ideal J ⊂ R[t, 1
t
] is defined by making generators of I invariant by

multiplying the variables with an appropriate power of t. If f is a generator
of I, we define a generator g of J by

g(x0, . . . , xn, t) = tcf(t−w1x0, . . . , t
−wnxn), (3.15)

where c is the weight of the terms of in(f). The Zariski closure of the scheme

ProjA1 R[t, 1
t
]/J ⊂ Pn × A1 (3.16)

is a flat family over A1 whose central fibre is defined by the ideal

In(I) :=
(

in(f) : f ∈ I
)
. (3.17)

The family of projective varieties ProjA1 R[t]/J determined by the bigraded
ring R[t]/J is a test configuration for (X,L).

Remark 3.14 (The filtration associated to an embedded test configuration: A
continuation of Example 3.13). Here is another way to realise the ring R[t]/J .
By rescaling the action if necessary we may assume that the largest of the
weights wi is equal to -1. We then define a filtration of A by C-vector spaces
FiA by setting

FiA = SpanC

{
f ∈ A :

f can be written as a sum of monomials

of weight i or less modulo I

}
. (3.18)
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For any element f ∈ A we define the level of f to be the number lev(f) =

min{i : f ∈ FiA}.
The ring R[t]/J is equivariantly isomorphic to the ring

ReesF•A :=
∞⊕
i=0

tiFi (A) ⊂ A[t], (3.19)

called the Rees algebra of F•A, by the isomorphism taking xi to twixi. Over
the central fibre (t) ∈ A1 we have

A[t]

(t) + J
∼= A/ In I, (3.20)

and a corresponding isomorphism for the Rees algebra

ReesF•A

(t)
∼=

∞⊕
i=0

Fi+1A

FiA
, (3.21)

where the latter ring is called the graded algebra of F•A.

Remark 3.15 (A generalisation of K-stability). The filtration

F•A : 0 ⊂ C = F0A ⊂ F1A ⊂ · · · ⊂ A, (3.22)

defined in Example 3.13, is due to Witt-Nyström and Székelyhidi [89, 85] and
it has the following properties.

(i) It is multiplicative meaning that it satisfies (FiA)(FjA) ⊂ Fi+j,.

(ii) It is homogeneous, that is, homogeneous parts of any element of FiA are
all in FiA.

(iii) Every element in A has finite level.

(iv) The Rees algebra ReesF•A is finitely generated.

The test configuration X from Equation (3.9) can be recovered from the fil-
tration 3.22 uniquely up to rescaling the action.

A filtration satisfying properties (i)-(iii) is called admissible. These prop-
erties were taken as an axiom by Székelyhidi in his formulation of K-stability,
which enlarges the set of test configurations Test(X,L) to include filtrations
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whose Rees algebra is not finitely generated. Without the assumption (iv) it
is still possible to consider a corresponding sequence (Xj)j∈N of test configura-
tions. The test configuration Xj is determined by an approximation Sj of the
Rees algebra A, where Sj is the algebra generated by the submodule

j⊕
k=0

FkAt
k ⊂ ReesF•A. (3.23)

It is easy to show that for i sufficiently large ProjA1 Sj is a test configuration
for (X,L). Székelyhidi defined the Futaki invariant of this sequence to be

lim inf
i→∞

DF(Xi) (3.24)

and proved, together with Boucksom and Stoppa [80], the K-stability of a cscK
polarised variety (X,L), assuming it has no infinitesimal automorphisms.

While the limit of the sequence Xi is not an algebraic object, it has an
analytic interpretation in the space of Kähler potentials [71]. Therefore the
set of test configurations has a limited analytic compactification with respect
to these very special sequences.
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Chapter 4

A formula for the Chern character
of a Schur power

This chapter is entirely devoted to a technical result used in the computation
of the weight polynomial of a flag bundle. We let r and λ be such that λ ∈ P(r)

throughout. We also fix a smooth proper scheme B of dimension b and a vector
bundle E of rank rE. Let p be the projection p : F l r(E)→ B.

Of independent interest would be finding a more general and more elegant
formulation for Theorem 4.3 (Theorem C), which gives a formula for the second
order asymptotics of the polynomial chEkλ under certain hypotheses. Laurent
Manivel has previously calculated the highest order term in [60, Section 3].
Background on Chern classes can be found in the seminal work of Grothendieck
[40].

4.1 A formula for the Chern character

If P is a symmetric polynomial and E is a vector bundle with Chern roots
x1, . . . , xrE , we write P (E) = P (x1, . . . , xrE). On the other hand it also makes
sense to consider the polynomial P on the algebra generated by line bundles
on a variety and operations defined by direct sums and tensor products. In
this case we write P (L1, . . . , LrE) for the resulting vector bundle, not to be
confused with P (E), which is a cohomology class.
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Let
cr(x1, . . . , xrE) =

∑
1≤i1<i2<···<ir≤rE

xi1 · · ·xir (4.1)

denote the rth elementary symmetric polynomial in x1, . . . , xrE . Similarly we
have the complete symmetric polynomial

hr(x1, . . . , xrE) =
∑

1≤i1≤i2≤···≤ir≤rE

xi1 · · ·xir . (4.2)

Recall that Schur polynomials are a basis of the algebra of symmetric funtion,
which appear naturally when computing the cohomology of Schur powers of
vector bundles. We define Schur polynomials by using the Giambelli formula
[36, Appendix A] as

sλ = det (hλi−i+j)1≤i,j≤l (4.3)

associated to a partition λ. In particular, s(k) = hk and s1k = ck.

Definition 4.1. Define the canonical partition σ = σrE ,r depending on the
parameter r by

σi = rE + l(λ)− r+(i)− r−(i) (4.4)

where r+(i) is the smallest integer in r satisfying r+(i) ≥ i and r−(i) the
largest integer in r satisfying r−(i) < i.

Example 4.2 (The canonical bundle of a Grassmannian). Consider the Grass-
mannian case r = (p), where 1 ≤ p < rE. Now the canonical partition σ is the
constant partition (rpE), which corresponds to the rEth multiple of the hyper-
plane bundle in the case p = 1. Note that the relative canonical bundle of PE
over B is the dual of the corresponding line bundle Lσ.

Theorem 4.3. Let E be a vector bundle of rank E and λ a partition whose
jumps are given by r. Assume that λ satisfies at least one of the following
conditions

• l(λ) ≤ 4

• λ = tσrE ,r for some t ∈ Q and rE > rc.
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Then there exist polynomials Bi(E, λ) ∈ Q[λ1, . . . λl, c1(E), . . . , crE(E)] such
that

chEλ = rankEλ (1 +B1(E, λ) +B2(E, λ) + · · ·+Bn(E, λ)) (4.5)

where Bi(E, λ) is homogeneous of degree i as an element of the Chow ring of
X and of degree i in the λi. The polynomials B1(E, λ) and B2(E, λ) are given
by

B1(E, λ) =
c1(λ)c1(E)

rE
(4.6)

and

B2(E, λ) ≡1
h2(λ)h2(E)

rE(rE + 1)
+
c2(λ)c2(E)

rE(rE − 1)

+
rEc1(λ)−

∑
i(2i− 1)λi

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
+O(1).

(4.7)

where O(1) denotes a term independent of λ. By the equivalence ≡1 we mean
the following: If U and V are k-cycles in B, then U ≡1 V if c1(A)n−k.(U −V )

is equal to 0 for all line bundles A ∈ PicB.

It is straightforward to check in cases which yield to computer analysis that
it is not necessary to assume � for the identity in Equation (1.10) to hold, but
we were unable to find a proof in the general case. Under the assumption �,
we prove the statement using the following determinantal identity, which the
author learned from a paper [16] pointed out by Will Donovan.

Lemma 4.4 (Determinantal identity). Let E be a vector bundle of rank rE
and λ a partition of length l. The Chern character of a Schur power of E is

chEλ = det
(
ch(Sλi+j−iE)

)
i,j

(4.8)

Proof. By the splitting principle [35, Remark 3.2.3] we may assume that E =

L1⊕· · ·⊕LrE . Let p be a polynomial function on the set of factors L1, . . . , LrE
with integral coefficients aI for I = (i1, . . . , irE). We denote

p(L1, . . . , LrE) =
⊕
I

(
Li11 ⊗ · · · ⊗ L

irE
rE

)⊕aI
, (4.9)
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Schur powers of decomposable vector bundles can be expressed in as

Eλ = sλ(L1, . . . , LrE), (4.10)

which we expand as a determinant using Equation (4.3)

sλ(L1, . . . , LrE) = det (hλi+j−i(L1, . . . , LrE))i,j . (4.11)

Taking Chern characters on both sides completes the proof of the Lemma.

Lemma 4.5. Let E be a vector bundle of rank rE. The Chern character of
the bundle SkE is(

k + rE − 1

rE

)(
1 +

c1(E)

rE
k + A1(E)k2 + A2(E)k + Z

)
, (4.12)

where A1(E), A2(E) ∈ Q[x1 . . . xrE ] are given by

A1(E) =
h2(E)

rE(rE + 1)
, (4.13)

A2(E) =
rE − 1

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
(4.14)

and Z is a sum of terms of Chow degree 3 and higher.

Proof. Recall the definition of the monomial symmetric function mµ of parti-
tion µ of length at most n. Given variables y = (y1, . . . , yn) we set

mµ(y) =
∑
σ∈Sn

yµ1σ(1) · · · y
µn
σ(n). (4.15)

We have

ch(SkE) = chhk(E)

= ch
∑
µ

mµ(E)

=
∑
µ

(1 + µ1x1 + µ2
1x

2
1/2 + · · · ) · · · · · (1 + µrExrE + µ2

rE
x2
rE
/2 + · · · )

(4.16)

where the sum is over all rE-tuples that sum to k. The rest of the computation
is an elementary summation. The Chow-degree one part of ch(SkE) is

ch(SkE)1 = rank
(
SkE

) c1(E)

rE
, (4.17)

49



where
rank

(
SkE

)
=

(
k + rE − 1

rE − 1

)
. (4.18)

The degree two term can be written as

k∑
i=1

k−i∑
j=1

ij

(
rE − 3 + k − i− j

rE − 3

) rE∑
l<m

xlxm +
k∑
i=1

i2
(
rE − 2 + k − i

rE − 2

) rE∑
l=1

x2
l /2,

(4.19)
which using the combinatorial identities proved in the appendix simplifies to

(k + rE − 1)!

(k − 2)!(rE + 1)!

rE∑
m<l

xmxl +
(rE + 2k − 1)(k + rE − 1)!

(k − 1)!(rE + 1)!

rE∑
m=1

x2
m/2. (4.20)

Picking out the rank rSkE of SkE as a common factor yields

ch2(SkE) = rSkE

(
k(k − 1)

rE(rE + 1)

rE∑
m<l

xmxl +
2k2 + k(rE − 1)

rE(rE + 1)

∑
m

x2
m/2

)
(4.21)

Recall that the Chern classes of E, when written in terms of the xi, are

c1(E)2 = h2(E) + c2(E) =

rE∑
m=1

x2
m + 2

rE∑
m<l

xmxl (4.22)

and

c2(E) =

rE∑
m<l

xmxl. (4.23)

Thus we have

ch
(
SkE

)
= rank(SkE)

(
1 +

c1(E)

rE
k + A1(E)k2 + A2(E)k + Z

)
, (4.24)

where
A1(E) =

h2(E)

rE(rE + 1)
, (4.25)

A2(E) =
(rE − 1)c1(E)2

2rE(rE + 1)
− c2(E)

rE + 1
=
rE − 1

2

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE − 1)

)
(4.26)

and Z is a sum of terms of Chow degree 3 and higher

Remark 4.6. The length of a partition λ whose jumps are given by r is the
largest integer rc in r.
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Proposition 4.7. Theorem 4.3 holds for partitions up to length 4.

Proof. This is an easy calculation for a computer using Lemma 4.5 and Lemma
4.4 [47, Calculation of Chern classes for Schur powers].

Remark 4.8 ([60, Section 3]). Alternatively one may expand the Chern char-
acter of SkE as ∑

p,q

xp
r∏
i=1

api,qi
pi!

(
k + rE − 1 + |q|
rE − 1 + |p|

)
(4.27)

where p, q range over r-tuples of nonnegative integers and ai,j is the jth coeffi-
cient of the ith Euler polynomial [60, Proposition 2.2]. This way the existence
of claimed decomposition

ch(SkE) = rank(SkE)A(k) (4.28)

is clear for higher degree terms as well. The determinantal identity implies
that we have

ch(Eλ) =
∑

pi,qj∈NrE

xp1+···+pl

p1! · · · pl!
ap1,q1 · · · apl,ql det

((
rE + λi + |qi| − i+ j − 1

rE + |pi| − 1

))
1≤i,j≤l

(4.29)

Let p : PE → X denote the projection. It is well known that we have the
pushforward formula ∫

PE
p∗c1 (OPE(1))n+r−1 =

∫
X

hn(E). (4.30)

This formula generalises to the following theorem by Laurent Manivel.

Theorem 4.9 ([60, Proposition 3.1]). Let λ be a partition whose jumps are
given by r and mZ≥0. Then we have

p∗
c1(Lλ)N+m

(N +m)!
≡1 Cλ,rE

∑
|µ|=m,l(µ)≤l(λ)

sµ(λ)sµ(E)∏l(λ)
k=1(rE + µk − k)!

, (4.31)

where Cλ,rE =
∏l(λ)

i=1(s+(i) − i)!
∏

λi>λj
(λi − λj). For m = n we have equality

of cycles, while for m < n, the relation ≡1 is the one defined in Theorem 4.3
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Remark 4.10. The result stated in [60] actually claims equality at the level of
cycle classes. As we were unable to reproduce the details which were left for
the reader in the paper, we state a slightly weaker result, but this is enough
for our purposes.

Remark 4.11. Although the highest order term of each Bi(E, λ) is a symmetric
function with respect to the λ, this is not the case for the lower order terms,
or indeed for the entire Chern character.

Remark 4.12. In particular, Theorem 4.9 computes the leading coefficient

Dλ,rE :=
Cλ,rE∏l(λ)

i=1(rE − i)!
(4.32)

of the Hilbert polynomial of a fibre π−1(x) for any x ∈ B.

Remark 4.13. We can write the line bundle Lσ in terms of the tautological
subbundles as

c⊗
i=1

(detR∗i )
ri+1−ri−1 . (4.33)

Lemma 4.14 (Canonical bundle of the flag variety). The canonical class of
F l r(E) is

c1(L−σ ⊗ p∗
(
KB ⊗ detEl(σ)

)
), (4.34)

where σ is the canonical partition defined Definition 4.1 and L−σ denotes the
dual of Lσ.

Proof. Consider the exact sequence

0 −→ VF lr(E) −→ TF lr(E) −→ HB −→ 0 (4.35)

where VF lr(E) is the relative tangent bundle of the fibration F l r(E) → B,
TF lr(E) is the tangent bundle and HB is isomorphic to the pullback of the
tangent bundle of the base B. The relative tangent bundle VF lr(E) has a
filtration

0 ⊂ F1 ⊂ · · · ⊂ FN ⊂ VF lr(E) (4.36)

such that
N⊕
i=1

Fi+1/Fi =
⊕

1≤i<j≤c

Qi ⊗Q∗j (4.37)
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This can be seen by successive fibrations by bundles of r′-flags, where r′ is a
subset of r [52]. We have

det(VF lr(E))
∗ ∼= det

( ⊕
1≤i<j≤c

Qi ⊗Q∗j

)∗
(4.38)

Denote detR∗i = Li and define

A(k) := det

( ⊕
1≤i<j≤k+1

Qi ⊗Q∗j

)
= det

( ⊕
1≤i<j≤k

R∗i /R∗i−1 ⊗Rj/Rj−1

)
.

(4.39)
We expand the determinant of the vector bundle of Equation (4.37) as

A(c) = det

( ⊕
1≤i<j≤c+1

Qi ⊗Q∗j

)
= det

( ⊕
1≤i<j≤c

R∗i /R∗i−1 ⊗Rj/Rj−1

)
.

(4.40)
This is convenient to write in additive notation as∑

1≤i<j≤c+1

(−(ri − ri−1) (Lj − Lj−1) + (rj − rj−1) (Li − Li−1)) . (4.41)

We have
A(k)− A(k − 1) = rkLk−1 − rk−1Lk. (4.42)

for any 1 ≤ k ≤ c. Therefore, we can see that the sum in Equation 4.41
telescopes and we find

A(c) =
c∑
i=1

(ri+1 − ri−1)Li − rcLc+1. (4.43)

Finally, the identity
KF lr(E) = −A(c) + p∗KB, (4.44)

follows from Equation 4.35. This completes the proof of the Lemma.

Lemma 4.15. Let r be an increasing sequence of c positive integers. Then
σ = σrE ,r is a partition of length rc with rc < rE. We have

|σ| = rErc, (4.45)
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rc∑
i=1

(2i− 1)σi = r2
crE −

c−1∑
i=1

riri+1(ri+1 − ri), (4.46)

and

h2(σ) =
1

2

(
rcrE

2(rc + 1) +
c−1∑
i=1

riri+1(ri+1 − ri)

)
, (4.47)

Proof. The proof is a direct calculation. We prove the third identity, which is
marginally more difficult than the first two. First notice that given an integer
n and an l-tuple λ, we have

h2(n+ λ) =
l(l + 1)

2
n2 + (l + 1)n|λ|+ h2(λ). (4.48)

where n is considered to be the constant l-tuple (n, . . . , n). Applying this in
the case n = rE + rc and λ = −(r+ + r−) it suffices to show that

h2(r+ + r−) =
1

2

(
r3
c (rc + 1) +

c−1∑
i=1

riri+1(ri+1 − ri)

)
. (4.49)

This is proved by induction. Let s be the tuple (r1, . . . , rc−1). We then have

h2(r+ + r−)− h2(s+ + s−) = (rc + rc−1)2(rc − rc−1)(rc − rc−1 + 1)/2

+
c−1∑
i=1

(ri − ri−1)(ri + ri−1)(rc − rc−1)(rc + rc−1)

= r3
c (rc + 1)/2 + r3

c−1(rc−1 + 1)/2 + rcrc−1(rc − rc−1)/2

(4.50)

from which the claim follows.

Let NrE ,r denote the relative dimension of a bundle of r-flags, given by

NrE ,r =
c∑
i=1

ri(ri+1 − ri), (4.51)

with the convention rc+1 = rE.

Proof of Theorem 4.3. Retain the notation in the statement of the Theorem
and denote N = NrE ,r. Assume that λ = tσ for some t ∈ Q. The leading order
term of B2(E, kλ) in k is

pr∗
c1(Lλ)N+2

(N + 2)!
≡1 Dλ,rE

(
h2(λ)h2(E)

rE(rE + 1)
+
c2(λ)c2(E)

rE(rE − 1)

)
, (4.52)
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by Theorem 4.9. The term B1(E, kλ) can be computed easily using the split-
ting principle. In general, we have

c1(Eλ) = rankEλc1(λ)c1(E)/rE. (4.53)

It suffices to verify that the k-linear term of B2(E, kλ) satisfies the claimed
identity.

For any line bundle L on the baseB, the Hirzebruch-Riemann-Roch formula
applied to the vector bundle (E⊗L)kλ yields

χ(B,Ektσ) =

∫
B

chLk|λ| chEkλTdB

=

∫
B

b∑
i=0

(k|λ|c1(L))i

i!
chEkλTdB.

(4.54)

Moreover, we have

c1(Lλ(A))N+n

(N + n)!
=

n∑
i=1

c1(Lλ)N+i

(N + i)!
p∗
c1(A)n−i

(n− i)!
(4.55)

for all n ≥ 1 and A ∈ PicB.
By the asymptotic Hirzebruch-Riemann-Roch formula on F l r(E) for the

line bundle Lλ(L|λ|)⊗k, we have

χ(F l r(E),Lλ(L|λ|)k) =

∫
F lr(E)

(
c1(Lλ(L|λ|))N+b

(N + b)!
kN+b

−
c1(Lλ(L|λ|))N+b−1KF lr(E)

2(N + b− 1)!
kN+b−1

)
+O(kN+b−2)

(4.56)

The remaining part of the statement then follows by comparing the k-degree
b− 1 coefficients of the c1(L)b−2 term in Equation (4.54) and Equation (4.56),
latter of which is equal to

kN+1

∫
X

(
(pr∗c1(Lλ))N+2

2t(N + 1)!
−

(pr∗c1(Lσ))N+1 (c1((detE)⊗l(λ)) +KB

)
2(N + 1)!

)
c1(Lb−2)

(b− 2)!
.

(4.57)
by Lemma 4.14. We write

B2(E, kλ) = k2B2,2 + kB2,1 +O(k0) (4.58)
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and expand the Chern character in of Ekλ as

chEkλ = Dλ,rE

(
kN +

N

2t
kN−1 +O(k0)

)(
1 +B1(E, kλ) + k2B2,2 + kB2,1

)
.

(4.59)
We can see that

B2,1 =

(
h2(λ)h2(E)

trE(rE + 1)
+

c2(λ)c2(E)

trE(rE − 1)
− l(λ)|λ|c1(E)2

2rE

)
, (4.60)

which can be written as
t ((rE − 1)h2(σ)− (rE + 1)c2(σ))

2rE

(
h2(E)

rE(rE + 1)
− c2(E)

rE(rE + 1)

)
, (4.61)

Finally by Lemma 4.15 we have
(rE − 1)h2(σ)− (rE + 1)c2(σ)

2rE
= h2(σ)− (rE + 1)er2

c

2

=

∑
i riri+1(ri+1 − ri)

2

=
t (e|σ| −

∑
i(2i− 1)σi)

rE − 1

=
e|λ| −

∑
i(2i− 1)λi

rE − 1

(4.62)

This completes the proof.

Remark 4.16. In general, there is a simple relation between the classesB2,0(λ,E)

and A2(E). Namely we have

B2,0 −
2(rE + 1)

rE − 1
A2(λ)A2(E) =

c1(λ)2c1(E)2

2rE2
. (4.63)

Remark 4.17. The same calculation can be used to find the codegree 1 asymp-
totics of Bi(E, kλ) in any Chow degree, when λ = kσ for some k ∈ Q. Keeping
to the same notation as in the proof, we have

Bm(E, kλ) = kmCλ,r

∑
|µ|=m sµ(λ)sµ(E)∏l
i=1(rE + µi − i)!

+ km−1Cλ,r

(
m
∑
|µ|=m sµ(λ)sµ(E)

2t
∏l

i=1(rE + µi − i)!
−
|λ|c1(E)

∑
|µ|=m−1 sπ(λ)sπ(E)

2
∏l

i=1(rE + pi − i)!

)
+O(km−2),

(4.64)

for any m ≥ 2.
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Chapter 5

K-stability of relative flag varieties

Fix the following notation. Let E be a vector bundle of rank rE on a polarised
smooth complex variety (B,L) of dimension b, and F l r(E) the flag bundle
of r-quotients of E with projection p onto B. Also fix an ample line bundle
Lλ(A) = Lλ⊗ p∗A on F l r(E), where λ is in P(r) and A is an ample line bundle
on B.

In Section 5.1 we construct a test configuration (YF ,Lλ(A)) which we
conjecture to be sufficient for detecting the K-instability of the flag bundle
(F l r(E),Lλ(A)) assuming that the base B is stable.

From now on, we assume that λ is in P�(r). Section 5.2 calculates the
Donaldson-Futaki invariant of YF if we assume the base to be a curve.

Theorem 5.1. Assume that B is a curve, E is ample and F is a subbun-
dle of E whose degree is positive. There exists a test configuration YF for
(F l r(E),Lλ(A)) such that

DF(YF ,Lλ(A)) = C (µE − µF ) . (5.1)

for some positive constant C depending on E,F, g and r.

In Section 5.3 we outline a similar calculation for adiabatic polarisations
on a flag bundle over a base of arbitrary dimension.

Theorem 5.2. Assume that F is a saturated torsion free subsheaf of E. Let
L be an ample line bundle on B and assume that A = Lm. Then there exists
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an integer m0 and a test configuration YF for (F l r(E),Lλ(Lm)) such that for
m > m0 the Donaldson-Futaki invariant of YF is given by

DF(YF ,Lλ(L
m)) = C (µE − µF) 1

m
+O( 1

m2 ) (5.2)

for some positive constant C depending on E,F,B and r.

These results immediately imply the stability statements of Theorem A
and Theorem B from Section 1.4.

Theorem 5.3 (The K-instability statements of Theorem A). Assume that B
is a curve, E is an ample vector bundle on B and A is ample. If E is slope
unstable and λ is in P�(r), then the flag bundle (F l r(E),Lλ(A)) is K-unstable.
If E is not polystable, then the pair (F l r(E),Lλ(A)) is not K-polystable.

Proof. Fix a destabilising subsheaf F of E with maximal slope. The saturation,
which by definition has a torsion free quotient, also destabilises. Torsion free
coherent sheaves on a curve are locally free, so we may assume that F is a
subbundle. In particular E/F is locally free. The claim then follows from
Theorem 5.1.

To prove the second assertion, let F be a subbundle of E with maximal
slope such that µ(F ) = µ(E) and assume that F is not a direct summand.
The scheme YF is smooth, so in particular it is normal. It follows that the test
configuration is almost trivial only if it the total space F l r(E) is isomorphic
to F l r(E) × A1 [79]. The two schemes F l r(E) and F l r(F ⊕ E/F ) are not
isomorphic since it is possible to construct an isomorphism of underlying vector
bundles from an isomorphism of flag bundles which preserves the polarisation.
Therefore the bundle F l r(E) is not K-stable.

Theorem 5.4 (Theorem B). If E is slope unstable and λ is in P�(r), then
there exists an m0 such that the flag variety F l r(E) of r-flags of quotients in
E with the polarisation Lλ(Lm) is K-unstable for m > m0.

Proof. Follows immediately from Theorem 5.2.

An identical argument to [68, Proposition 5.25] which will not be repeated
here shows the following instability result which is also discussed in Example
8.67.

58



Proposition 5.5. If the base (B,L) is strictly slope unstable in the sense of
[68, Definition 3.8], then there exists an m0 > 0 such that (F l r(E),Lλ(Lm))

is K-slope unstable for m > m0.

5.1 Simple test configurations on flag bundles

In this section we define the relative test configuration (YF ,Lλ(A)). First,
recall the following standard construction.

Definition 5.6 (The extension group of a coherent sheaf). Let F and Q be
coherent sheaves on B and let p1 : B × A1 → B be the first projection. An
extension of Q by F is a coherent sheaf E ′ together with maps of OB-modules
which fit the short exact sequence

0→ F → E ′ → Q→ 0. (5.3)

Extensions are parametrised by the vector space V = Ext1(B,Q,F) and there
is a universal extension U on B × V whose fibres are the corresponding ex-
tensions E ′. The sheaf U is naturally C×-equivariant for the scaling action on
B × V which acts trivially on B.

Consider the reverse point of view where E is a fixed vector bundle fitting
an exact sequence

0→ F → E → Q→ 0. (5.4)

Remark 5.7 (Turning off an extension). Let E be a locally free sheaf on B

and F a quasicoherent subsheaf of E with quotient Q. We abuse notation by
writing p∗1E as E[t] (we tacitly identify the algebra C[t] with the associated
sheaf on A1), and identify EF as the subsheaf

EF = p∗1F + tp∗1E ⊂ p∗1E = E[t]. (5.5)

The sheaf EF is naturally isomorphic to the pullback of the universal extension
under the inclusion

B × A1 → B × Ext1(B,Q,F). (5.6)
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There is a natural Gm-linearisation on EF of the standard Gm-action on
B × A1. The fibre over s ∈ A1 of the sheaf EF is given by

EF

(t− s)EF
∼=

E if s 6= 0

F ⊕Q if s = 0.
(5.7)

In particular, the fibre of E over s = 0 is fixed by the Gm-action, and so are
all the fibres of F ⊕ Q over B × {0}, so the linearisation is determined by a
simple scaling action on the sections. Over the central fibre a section over an
open set U ⊂ B can be written as

σ = f + te+ tEF(U) ∈ E
F

tEF
(U) (5.8)

Therefore we can write σ uniquely as f + t (e+ F(U)) + t2E(U). The scaling
action on A1 acts on the section t with weight −1.

We may renormalise the natural Gm-linearisation on EF to scale sections
of F with weight 1 and sections of Q with weight 0 over the central fibre. By
Lemma 2.2, we have an induced Gm-action on the relative flag scheme

F l r(EF) = ProjB×A1 Sλ(EF) (5.9)

with a natural linearisation on the Serre line bundle which we denote by Lλ.
The central fibre is isomorphic to F l r(F ⊕Q).

Let Lλ be the line bundle on YF = F l r(EF) corresponding to a partition
λ ∈ P(r). The Gm-action on E induces a linearised action on (YF ,Lλ). We
extend this action trivially to any line bundle Lλ(f

∗A), where A ∈ PicB and
f : B × A1 → B is the projection. We will abuse notation by writing this line
bundle simply as Lλ(A).

Claim 5.8. Assume that B is a curve, E is an ample vector bundle on B and
A is an ample line bundle on B. Let F be a subbundle of E of positive degree
and maximal slope with quotient Q. Then (YF ,Lλ(A), ρ) is a test configuration
for (F l r(E),Lλ).

Proof. It suffices to show that the polarisation Lλ(A) is ample over the central
fibre. Since E is ample, we may assume that A = OB. By Proposition 2.19 it
suffices to show that F ⊕Q is ample.
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The bundle E/F is ample since it is a quotient of an ample bundle. The
subbundle F has positive degree and it is stable so it is ample by [42, Section
2]. Therefore the Schur power (F ⊕ Q)λ is ample by Proposition 2.19, which
proves the claim.

Remark 5.9. We fully expect the statement of Claim 5.8 to be true if F is as
above and we only assume Lλ(A) to be ample.

Claim 5.10. Let L be an ample line bundle on B. Then the pair (YF ,Lλ(L
m), ρ)

is a test configuration for m� 0.

Proof. This follows immediately from [43, Proposition 7.10].

We call the Gm-linearised pair (F l r(E),Lλ(A)) the simple test configura-
tion induced by F .

Assume that the scheme (YF ,Lλ(A)) is a test configuration and let h(k)

and w(k) be the Hilbert and weight polynomials. Let p1 and p2 be the two
projection of the product B × P1 and define the vector bundle

Ẽ = p∗1F ⊗ p∗2OP1(1)⊕ p∗1Q. (5.10)

We write the vector bundle Ẽ simply as Ẽ = F (1)⊗Q.

Lemma 5.11. The weight function w(k) of the action ρ and the Hilbert func-
tion h(k) = h0(F l r(E),L(A)k) satisfy the identity

w(k) + h(k) = χ(B × P1, Ẽλ ⊗ p∗1A). (5.11)

Proof. Assume first of all that A = OB. By the Littlewood-Richardson rule
(see [88, (2.3.1) Proposition]) we have the decomposition

Ẽλ =
⊕
ν,µ

(F (1)ν ⊗Qµ)⊕M
λ
νµ , (5.12)

where the sum is over all partitions ν and µ whose sizes sum up to the size of
λ and the coefficient Mλ

ν,µ is the Littlewood-Richardson coefficient. Using the
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Künneth formula, Riemann-Roch on P1 and additivity of the Euler character-
istic we see that

χ(B × P1, Ẽλ) =
∑
ν,µ,λ

Mλ
ν,µχ(B × P1, F ν ⊗Qµ ⊗OP1(|ν|))

=
∑
ν,µ,λ

(|ν|+ 1)Mλ
ν,µχ(B,F ν ⊗Qµ)

= χ(B,Eλ) +
∑

|ν|+|µ|=|λ|

|ν|χ(B, (F ν ⊗Qµ)⊕M
λ
ν,µ).

(5.13)

Assuming that the vector bundles Ẽλ and Eλ are ample, the weight w(k) is
given by

w(k) =
∑

|ν|+|µ|=|λ|

|ν|h0
(
B, (F ν ⊗Qµ)⊕M

λ
ν,µ

)
. (5.14)

Finally, the calculation works verbatim if the bundle A is nontrivial.

Using Lemma 5.11 we can calculate both the Hilbert and the weight poly-
nomials using the Hirzebruch-Riemann-Roch formula. For the former, we have

h(k) =

∫
B

ch(Ekλ) ch(A)TdB, (5.15)

and similarly for the latter, we have

w(k) =

∫
B×P1

ch(Ẽkλ) ch(A)TdB×P1 − h(k). (5.16)

There exist integers a0, a1, b0 and b1 so that we can write

χ(B,Ekλ) = rankEkλ
(
a0k

b + a1k
b−1 +O(kb−2)

)
(5.17)

and
χ(B × P1, Ẽkλ) = rankEkλ

(
b0k

b+1 + b1k
b +O(kb−1)

)
. (5.18)

The common factor cancels and we get

DF (YF ,Lλ(A)) =
b0a1 − b1a0 + a2

0

a2
0

(5.19)

for the Donaldson-Futaki invariant.
The Chern classes of the twisted bundle Ẽ appearing in Equations (5.17)

and (5.18) are given by the following Lemma.
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Lemma 5.12. Let Ẽ be the vector bundle defined in Equation (5.10) and h is
the fibre of a point under p2. We have

h2(Ẽ) = rFp
∗
1c1(E)h + p∗1c1(F )h + p∗1h2(E) +

rF (rF + 1)h2

2

c2(Ẽ) = rFp
∗
1c1(E)h− p∗1c1(F )h + p∗1c2(E) +

rF (rF − 1)h2

2

c1(Ẽ) = p∗1c1(E) + rFh

A2(Ẽ) = − rF
rE + 1

(
p∗1c1(E)h

rE
− p∗1c1(F )h

rF

)
+ Z

(5.20)

where Z is contained in the image of p∗1 and the class A2(Ẽ) is defined in
Lemma 4.5.

Proof. The proposition follows by direct computation from the Whitney sum
formula [35, Theorem 3.2] and the general fact that we have

ck(F ⊗ L) =
k∑
j=0

(
r − i+ j

j

)
ck−j(F)c1(L)j (5.21)

for any locally free sheaf F and line bundle L [35, Example 3.2.2]. Alterna-
tively, one may get the result using the splitting principle.

Remark 5.13 (Optimal test configurations). Before proceeding with the proofs
of Theorems 5.1 and 5.2, we make a naive but natural conjecture to make about
the optimality of the test configuration YF . Assume that B is K-stable and F
has maximal slope in the set of torsion free subsheaves of E. We conjecture
that the test configuration YF is a maximally destabilising test configuration
of (F l r(E),Lλ(A)) in the sense that the quantity DF(Y )

‖Y ‖ is bounded below by
DF(YF )

YF
.

Optimality of test configurations in this sense was studied by Székelyhidi
in the case of toric varieties [83]. The difficulty in the general case stems from
the difficulty of parametrising the collection of test configurations, which is a
partial motivation for our work on filtrations in Chapter 8.

5.2 Flag variety over a curve

The aim of this section is to prove Theorem 5.1.
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Proof of Theorem 5.1. Let B be a curve. Let F be a subbundle of E and
A a line bundle on B such that the polarised scheme (Y ,Lλ(A)), where
Y = F l r(EF), is a test configuration for (F l r(E),L(A)). We may assume that
Ẽλ⊗A is ample, since twisting by the pullback OP1(1) leaves Equation (5.19)
invariant. We will show that the Donaldson-Futaki invariant of the test con-
figuration (Y ,Lλ(π

∗A)) satisfies

DF(Y ) = Cg,E,A,λ(µE − µF ), (5.22)

where C is a positive number depending on B,A,E, F and λ. By Riemann-
Roch the Hilbert polynomial of Lkλ(A) satisfies

χ(F l r(E),Lk) = rankEkλ (a0k + a1) , (5.23)

where

a0 = c1(λ)µE + µA,

a1 = 1− g.
(5.24)

Using the Riemann-Roch formula on B × P1, we can write

χ(B,Eλ ⊗ Lmk) =

∫
B×P1

rE
kc1(A) ch(Ẽkλ)TdB×P1 . (5.25)

By Theorem 4.3 we have

h0(B × P1, Ẽkλ) = rankEkλ(b0k
2 + b1k +O(1)), (5.26)

where denoted

b0 =
h2(λ)h2(Ẽ)

rE(rE + 1)
+
c2(λ)c2(Ẽ)

rE(rE − 1)
+
c1(λ)

rE
c1(Ẽ).c1(A) (5.27)

and

b1 = HλA2(Ẽ)− c1(λ)c1(Ẽ).KB×P1

2rE
− c1(A).KB×P1

2
. (5.28)

Here the class A2(Ẽ) is defined in Equation (4.14) and we write

Hλ =
rEc1(λ)−

∑rc
i=1(2i− 1)λi

rE − 1
. (5.29)
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Let g and h be the two fibres of the first and second projection of the product
B × P1, respectively. The intersection matrix with respect to this basis is(

0 1

1 0

)
. (5.30)

As a special case of Lemma 5.12 we have

c1(Ẽ)2 = 2rF rEµE. (5.31)

Calculating the intersection classes appearing in Equations (5.27) and (5.28)
gives

−c1(Ẽ).KB×P1

2
= (fh + (rEµE)g).(h + (1− g)g)

= rEµE +
(1− g)c1(Ẽ)2

2rEµE
,

−c1(A).KB×P1

2
= µAg.(h + (1− g)g) = µA, and

c1(Ẽ).c1(A) = rFµA.

(5.32)

Let y = (y1, . . . , yl) be variables. For any such y define the symmetric polyno-
mial

A2(y) =
rE − 1

2

(
h2(y)

rE(rE + 1)
− c2(y)

rE(rE − 1)

)
. (5.33)

Using the above calculations and Remark 4.16 we then have

b0 =
2(rE + 1)

rE − 1
A2(λ)A2(Ẽ) +

c1(λ)2c1(Ẽ)2

2r2
E

+
c1(λ)rFµA

rE
,

b1 = HλA2(Ẽ) + a0 +
(1− g)c1(λ)c2

1(Ẽ)

2r2
EµE

,

(5.34)

By direct calculation, and Lemma 5.12 the Donaldson-Futaki invariant defined
in Equation (5.19) is given by

DF(Y ) =
(
a1b0 − a0b1 + a2

0

)
/a2

0

= Cg,E,A,λ(µE − µF ),
(5.35)

where the constant Cg,E,A,λ is given by

Cg,E,A,λ =
rF

(rE + 1) (c1(λ)µE + µA)2

(
Hλ (c1(λ)µE + µA) +

2(g − 1)(rE + 1)A2(λ)

rE − 1

)
.

(5.36)
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We are left to verify that the constant Cg,E,A,λ is positive. For g ≥ 1, it suffices
to show that Hλ and A2(λ) are positive since c1(λ)µE +µA is positive as Lλ(A)

is ample.
Using rE − 1 ≥ rc and recalling that rc is the length of λ, we have

(rE + 1)rE(rE − 1)A2(λ) = (rE − 1)c1(λ)2 − 2rEc2(λ)

= (rE − 1)
rc∑
i=1

λ2
i − 2

∑
1≤i<j≤rc

λiλj

≥
∑

1≤i<j≤rc

(λi − λj)2 > 0.

(5.37)

We have
l∑

i=1

(2i− 1)λi =
c∑
j=1

(λ′i)
2, (5.38)

where λ′ denotes the conjugate partition of λ. To see that the first term of
Equation (5.36) is positive, notice that

ec1(λ)−
∑
i

(2i− 1)λi =
s∑
j=1

λ′i(rE − λ′i) > 0, (5.39)

which is positive since rE > rc ≥ λ′i for all i. Hence Cg,E,A,λ > 0 for all g ≥ 1.
A similar calculation shows that C0,E,A,λ is positive.

5.3 Flag variety over a base of higher dimension

Our aim is to prove Theorem 5.2. We proceed in two stages. First, we assume
for simplicity that the test configuration is induced by a subsheaf of E. Finally,
we use Proposition 5.15 that this can be done without loss of generality.

Proof of Theorem 5.2. By Proposition 5.15 we may assume that F is a sub-
bundle. We will show that the leading term in m in the Donaldson-Futaki
invariant of the test configuration (Y ,Lλ(p

∗
1L

m)) is

DE,λ,L,rF (µ(E)− µ(F )), (5.40)
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where DE,λ,L,rF is a positive number depending on B,L,E, F and λ. Here p1

is the first projection from B × A1. Expand the Chern character of Ekλ as

chEkλ =
b∑
i=0

chiE
kλ (5.41)

and the Todd class of B as

Todd(B) =
b∑
i=0

Toddi(B). (5.42)

We then have

χ(F l r(E),Lλ(Lm)⊗k) = χ(B,Ekλ ⊗ Lmk)

=

∫
B

rE
mkω ch(Ekλ)Td(B)

=
(mk)b

b!
ωb rank(Ekλ)

+
(mk)b−1

(b− 1)!
ωb−1

(
rank(Ekλ)

c1(B)

2
+
kc1(λ)c1(Eλ)

rE

)
+

(mk)b−2

(b− 2)!
ωb−2

(
rank(Ekλ) Todd2(B) +

kc1(λ)c1(Eλ).c1(B)

2rE
+ ch2(Ekλ)

)
+O(kb−3),

(5.43)

which follows from Riemann-Roch and the pushforward formula of Proposition
2.24. Here Td2(B) is the second Todd class of B. Using Riemann-Roch on
B × P1, we similarly compute the Hilbert polynomial of Ẽλ ⊗ p∗1Lm, where p1

is the first projection.
To apply Lemma 5.11, choose m0 so that the bundle E ⊗ L

m0
c1(λ) is ample

and assume from now on that m > m0.
As in Section 5.2, we write

h0(B,Ekλ ⊗ Lmk) = rankEkλ
(
a0k

b + a1k
b−1 +O(kb−2)

)
,

h0(B × P1, Ẽkλ ⊗ Lmk) = rankEkλ
(
b0k

b+1 + b1k
b +O(kb−1)

)
.

(5.44)
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Next, we expand the ai and the bi in powers of m as

b0 = b0,0m
b + b0,1m

b−1 +O(mb−2), (5.45)

b1 = b1,0m
b + b1,1m

b−1 +O(mb−2), (5.46)

a0 = a0,0m
b + a0,1m

b−1 +O(mb−2), (5.47)

a1 = a1,0m
b + a1,1m

b−1 +O(mb−2). (5.48)

Let ω = c1(L) and η = p∗1ω. Using Theorem 4.3 and equation (5.43), we see
that

b0,0 =
c1(λ)

rE · b!
ηb.c1(Ẽ)

b0,1 =
1

(b− 1)!
ηb−1.

(
h2(λ)h2(Ẽ)

rE(rE + 1)
+
c2(λ)c2(Ẽ)

rE(rE − 1)

)

b1,0 = −η
b.KB×P1

2 · b!

b1,1 =
1

(b− 1)!

(
ηb−1.HλA2(Ẽ)− c1(λ)ηb−1.KB×P1 .c1(Ẽ)

2rE

)

a0,0 =
ωb

b!
=

degL

b!

a0,1 =
c1(λ)

rE(b− 1)!
ωb−1.c1(E)

a1,0 = 0

a1,1 = −ω
b−1.KB

2(b− 1)!
= − degKB

2(b− 1)!
.

The proof of the following lemma is a straightforward calculation.
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Lemma 5.14. The intersection numbers appearing above are

ωb = degL

ωb−1.c1(E) = rEµE

ωb−1.KB = degKB

ηb.c1(Ẽ) = degL(rEα + rE)

ηb−1.c1(Ẽ)2 = 2rF rEµE

ηb−1.c2(Ẽ) = rF rEµE − rFµF
ηb−1.KB×P1 .c1(Ẽ) = f degKB − 2rEµE

ηb.KB×P1 = −2 degL

ηb.A2(Ẽ) =
rE(µE − µF )

rE + 1
.

We write Laurent expansion of the Donaldson-Futaki invariant in m

DF(Y ,LE,m, ρ) = F0 + F1m
−1 +O(m−2), (5.49)

where

F0a
2
0 = a1,0b0,0︸ ︷︷ ︸

=0

−a0,0b1,0 + a2
0,0 = −

(
degL

b!

)2

+

(
degL

b!

)2

= 0 (5.50)

and
F1a

2
0 = a1,0b0,1︸ ︷︷ ︸

=0

+a1,1b0,0 − a0,1b1,0 − b1,1a0,0 + 2a0,0a0,1. (5.51)

An elementary calculation similar to the one we did in Section 5.2 shows that

DF(Y ,Lλ(p
∗
1L

m)) = DE,λ,L,rE(µE − µF )m−1 +O(m−2) (5.52)

where
DE,λ,L,rE =

rF bHλ

(rE + 1) degL
(5.53)

is a positive constant by the same argument as in Section 5.2. Theorem 5.2
then follows from the following Proposition.

Proposition 5.15. Using notation from Section 5.1, let (F l r(EF),Lλ(L
m))

be a test configuration for (F l r(E),Lλ(Lm)) where F is a saturated torsion
free subsheaf of E. Then the formula

DF(F l r(EF),Lλ(L
m)) = DE,λ,L,rE(µE − µF)m−1 +O(m−2) (5.54)
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for the Donaldson-Futaki invariant still holds for m� 0.

Proof. It follows that E/F is also torsion free, and F and E/F are both
locally free over an open subset U whose complement is of dimension at least
2. The leading order terms inm of h(k) and w(k) given in Equation (5.45) only
involve the first Chern classes of F and E/F . But the first Chern classes can
be computed over the open set U where F and E/F are locally free. The Schur
functor commutes with localisation, so Theorem 4.3 holds for the restriction(
F ⊕ E/Fλ

) ∣∣
U
. Therefore, we may assume without loss of generality that F

is a subbundle.
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Chapter 6

Uniformisation theorem for flag
bundles over Riemann surfaces

We show that there is a simple extension of the Uniformisation Theorem to
flag varieties of polystable vector bundles over Riemann surfaces.

Throughout this chapter we let C be a curve and denote its fundamental
group by Γ without reference to the choice of a base point. Let Ĉ be the
universal cover of C, which is one of the three model spaces given by the
Uniformisation theorem. Let π be the canonical projection Ĉ → C and σ the
covering action Ĉ × Γ→ Ĉ.

Theorem 6.1. Let E be a polystable vector bundle on C and let F l r(E) be a
flag bundle of E over C. All Kähler classes in F l r(E) are cscK. In particular,
F l r(E) is K-semistable for all polarisations.

We obtain a partial Yau-Tian-Donaldson correspondence for flag bundles
on high genus curves using Theorem 6.1.

Theorem 6.2. Let (F l r(E),Lλ(A)) be a polarised flag bundle on C.
If E is polystable, the flag bundle (F l r(E),Lλ(A)) is K-semistable. If E is

stable and g ≥ 2, then the variety (F l r(E),Lλ(A)) is K-stable.
Finally, if E is simple and g ≥ 2, the YTD correspondence holds for any

line bundle Lλ(A) with λ ∈ P�(r) and A ample.

We prove the following Lemma in Section 6.2.
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Lemma 6.3. If the vector bundle E is simple and the genus satisfies g ≥ 2,
then the automorphism group of F l r(E) is discrete.

Proof of Theorem 6.2. The first statement follows directly from Theorem 6.1
and Proposition 1.3.

For the second statement, we also need Lemma 6.3 and Proposition 1.5
which strengthens Proposition 1.3 in the case of a discrete automorphism
group.

If E is polystable, the final statement follows from the second statement.
If E is simple but not polystable, then we can construct a destabilising test
configuration for (F l r(E),Lλ(A)) by Theorem 5.3.

Remark 6.4. In order to prove a full YTD correspondence on flag bundles
over curves one would need to analyse the delicate cases when F l r(E) admits
vector fields. By Equation (6.18) and the preceding discussion we see that this
may happen when the base curve C is an elliptic curve and when E is properly
polystable, that is, isomorphic to a direct sum of stable vector bundles of equal
slopes. If the base curve C is isomorphic to P1, Grothendieck’s theorem states
that any holomorphic vector bundle E can be decomposed into a direct sum⊕rE

i=1OP1(mi) for some mi ∈ Z for i = 1, . . . , rE [39].

6.1 Construction of flag bundles from represen-
tations of the fundamental group

Let G be an algebraic group and ρ : Γ→ G be a representation. We define the
associated bundle with fibre G [51]

Eρ = Ĉ ×G/Γ (6.1)

by the identification
(c, g) ∼ (σ(γ, c), ρ(γ)g) (6.2)

for (c, g) ∈ Ĉ ×G and γ ∈ Γ. The quotient space Eρ is an algebraic principal
bundle over the curve C.

A representation ρ : Γ→ GL(e,C) determines a vector bundle Eρ by setting

Eρ = C × CrE
/

Γ (6.3)
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by the identification in Equation (6.1) with GL(e,C) acting on CrE in the usual
way. The vector bundle Eρ and its associated frame bundle Eρ have natural
Zariski trivial algebraic structures since the fibre of Eρ is GL(rE,C) [73].

A locally trivial holomorphic fibration with fibre F is a holomorphic map
f : M →M ′ of complex manifolds M and M ′ such that each point x ∈M ′ has
an analytic neighborhood U ⊂M ′ such that the restriction of f to U is given
by the first projection U × F → U .

Theorem 6.5. Suppose that E is polystable vector bundle over a (complex,
smooth, projective) curve C. Let P̄r denote the image of the parabolic subgroup
Pr ⊂ GL(rE,C) in PGL(rE,C). Then there exists representation ρ : Γ →
PGL(rE,C) such that the holomorphic quotient map

Ĉ × PGL(r, E)
/
P̄r → F l r(E) (6.4)

is a holomorphic locally trivial fibration with fibre Γ.

Proof of Theorem 6.5. Let E be the frame bundle of E and define the projec-
tivised frame bundle

Ē := E/Gm
, (6.5)

where Gm acts via the inclusion

λ 7→ λI ∈ GL(rE,C) (6.6)

for λ ∈ Gm. By the Narasimhan-Seshadri Theorem 2.7 there exists a repre-
sentation ρ : Γ→ PGL(rE,C) such that Ē is the associated bundle

Ē =
(
Ĉ × PGL(rE,C)

)/
Γ. (6.7)

of the representation ρ Since multiples of the identity matrix are contained in
Pr we can write

F l r(E) = Ē/P̄r. (6.8)

Hence the representation ρ induces an action of Γ on F l r(E). The double
quotient

Ĉ × PGL(rE,C) −→ E −→ F l r(E) (6.9)

can be factorised in two ways. We define the map

π̂ : Ĉ × PGL(rE,C)/P̄r −→ F l r(E) (6.10)
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by
(x, gP̄r) 7→

(
σ(Γ, x), ρ(Γ)gP̄r

)
∈ F l r(E). (6.11)

The map π̂ fits into the diagram

Ĉ × PGL(rE,C) E

Ĉ × PGL(rE,C)/P̄r F l r(E)
π̂

and is a locally trivial holomorphic fibration with fibre Γ, since π is.

6.2 Constant scalar curvature Kähler metrics on
flag bundles and K-polystability

We begin with a proof of Theorem 6.1, then turn to the proof of Lemma 6.3.

Proof of Theorem 6.1. Let G denote the group PGL(rE,C). The Picard group
of F l r(E) is generated by line bundles of the form Lλ(A) where λ is in P(r)

and A is a line bundle on C by Lemma 2.29.
Fix a line bundle M = Lλ ⊗ A with A ∈ PicC and λ ∈ P(λ). Let

π : Ĉ ×G/Pr → F l r(E) (6.12)

be the projection constructed in Theorem 6.5.
There is a Kähler-Einstein (hence cscK) metric ω0 in c1(Lλ), unique up

to the action of G, by results of Koszul and Matsushima [2]. Let s0 be the
(constant) scalar curvature of ω0. Let ωA be a constant scalar curvature metric
such that 2π[ωA] = c1(A) with scalar curvature s1 and let ω1 be the pullback
to Ĉ. Since ω0 + ω1 is Γ-invariant, it descends to a form ω on F l r(E) with
constant scalar curvature s0 + s1.

Let V be a complex vector space of dimension rE. In order to apply a
classical result of Demazure, we regard F l r(V ) as a quotient of PGL(r, V ).
Let Qr be the image of a stabiliser of an r-flag of subspaces in PSL(rE,C)
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and let qr be its Lie algebra. Also let psl(rE,C) denote the Lie algebra of
PSL(rE,C). We have a well known exact sequence

0 −→ (PSL(rE,C)×qr)/Qr −→ PSL(rE,C)/Qr×psl(rE,C) −→ TF lr(V ) −→ 0.

(6.13)
where Qr acts on qr by the adjoint action and TF lr(V ) is the tangent bundle.

It follows from results of Demazure and Bott [1, Section 4.8] that we have

H i
(
F l r(V ), TF lr(V )

)
=

psl(rE,C), if i = 0

0, otherwise.
(6.14)

Let p : F l r(E) → C be the projection. Since F l r(E) is Zariski locally
trivial on C, this generalises in a straightforward manner. Let h be a hermitian
metric on E and let End0(E) denote the sheaf of trace-free endomorphisms on
E. Let U be a Zariski open set in C such that

F l r(E) ∼= U ×F l r(V ). (6.15)

We have a natural identification(
End0(E)/C

) ∣∣
U
∼= OB

∣∣
U
⊗ psl(rE,C), (6.16)

where the C denotes the constant sheaf included in End0(E) as multiples of
the identity. Let VF lr(E) denote the relative tangent bundle of F l r(E) with
respect to the projection p. We obtain from Equation (6.14)

Rip∗VF lr(E) =

End0(E)/C if i = 0 and

0 otherwise,
(6.17)

Proof of Lemma 6.3. We must show that the vector space H0(F l r(E), TF lr(E))

is trivial. We have the exact sequence

0 −→ VF lr(E) −→ TF lr(E) −→ p∗TC −→ 0 (6.18)

where TC is the tangent bundle of the curve C. It suffices to show that
H0(F l r(E),VF lr(E)) = 0 since H0(C, TC) = 0 as the genus g(C) satisfies
g(C) > 1. The vector bundle E is simple, therefore we have H0(C, End(E)) =

C · IdE. The claim follows by identifying H0(C, End0(E)) as a subspace of
H0(C, End(E)).
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Chapter 7

K-stability of complete
intersections

The objective of this chapter is to provide additional examples of K-unstable
varieties. We describe a situation in which the Donaldson-Futaki invariant of
a complete intersection can be calculated. In Section 7.1 and apply the result
in the case of flag bundles in Section 7.2.

The idea is to fix a complete intersection X in a polarised variety Y and a
test configuration Y for Y . Consider then the Zariski closure of the orbit of X
in Y under the Gm-action. The scheme X is a test configuration for X and
its Donaldson-Futaki invariant depends, a priori, on the test configuration Y

in a complicated way. However, in some favourable situations the Donaldson-
Futaki invariant of X is related to the Donaldson-Futaki invariant of Y and
topological data of X in Y . Examples of this behaviour have been given by
Stoppa-Tenni [81] and Arezzo-Della Vedova [7].

The main result of this chapter is a generalisation of an example in [81].

Theorem 7.1 (A simple limit for high genus curves). Let E be an ample vector
bundle of rank rE on a curve, and F is a subbundle of E of rank rF . Assume
that

(Y ,L ) = (F l r(EF),Lλ) (7.1)

is a test configuration for (F l r(E),Lλ) as defined in Chapter 5, and that λ is
in P�(r). Let X be a generic complete intersection in F l r(E) of codimension
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less than the integer Nλ,rE ,rF defined in Equation (7.9). Then the Donaldson-
Futaki invariant of the test configuration X , defined as the closure of the orbit
of X in Y , is given by

DF(X ) = D (CE degE + CF degF ) g +O(g0), (7.2)

where D is a positive number and CE and CF are given in Equation (7.28).
All three numbers depend only on degE, degF , the codimension u of X and
λ.

We may easily construct examples of K-unstable complete intersections in
flag bundles over curves using Theorem 7.1. The simplest such construction is
due to Stoppa and Tenni.

Fix a positive integer d and let C(g) be a sequence of d-gonal curves of
genus g for all integers g larger than 2, and let Lg be a degree d line bundle
on C(g). Let

Fg = Lg and Eg = O⊕rE−1
C(g) ⊕ Lg.

With these choices degEg and degFg are bounded as functions of g and the
final term in Equation (7.2) is under control. The vector bundle Eg is only
globally generated but we may find a test configuration for an ample polari-
sation on X whose Donaldson-Futaki invariant is arbitrarily close to the one
given by Equation (7.2) when applied to the globally generated vector bundle
Eg. We do this by replacing the vector bundle Eg with Eg⊗A

ε
|λ| , where A

is an ample line bundle on C(g). Finally, we use the following Lemma which
follows directly from calculations done in Sections 5.2 and 7.1.

Lemma 7.2. The Donaldson-Futaki invariant of (YF ,Lλ(εA)) is continuous
in ε.

Using Lemma 7.2 and simple combinatorics outlined in Section 7.2 we ob-
tain the following new examples of K-unstable varieties.

Theorem 7.3 (Theorem D). Let Y be the Grassmannian of p-dimensional
quotients of Eg with the polarisation Lλ(εA), where λ = (1p). Let s be a
positive integer.
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Then there exists numbers ε0 > 0 and g0 > 0 such that a general hypersur-
face H in Y which is a defined by a section of a multiple of s (Lλ(εA)) with
the polarisation Lλ(εA)

∣∣
H

is K-unstable for all ε < ε0 and g > g0.

We may also ask for H to be smooth in the statement of Theorem 7.3 by
Bertini’s theorem [43, Theorem II.8.18].

Proposition 7.4. For s > e the hypersurface H is of general type.

Proof. We prove that KH is ample. This follows directly from the adjunction
formula [35, Example 3.2.12]. In the notation of Theorem 7.3, we have

KH =
(
L−σ +KC(g) + sLλ(εA)

) ∣∣
H
, (7.3)

where σ is the partition (rE
p). The statement then follows from Remark 2.22

and the preceding discussion.

7.1 The Donaldson-Futaki invariant of a com-
plete intersection

Let ρ be Gm-action on a polarised variety (Y, L) of dimension n and let ϕi be
sections of H0(Y, Lsi) for 1 ≤ i ≤ u. Let γ be an integer, and assume that
the natural representation of ρ on H0(Y, Lsi) acts on ϕi by t.ϕi = tγsiϕi for
all i and t ∈ Gm. Denote the complete intersection of ϕ1, . . . , ϕu by X. The
Gm-action determines a product test configurations Y for (Y, L) and X for
(X,L

∣∣
X

), since X is invariant under ρ.
Write the Hilbert and weight functions of Y and X as

h0
Y (k) = a0k

n + a1k
n−1 +O(kn−2),

wY (k) = b0k
n+1 + b1k

n +O(kn−1),

h0
X(k) = c0k

n−u + c0k
n−u−1 +O(kn−u−2)

and

wX(k) = d0k
n−u+1 + c0k

n−u +O(kn−u−1),
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respectively. The following Proposition is a special case of [7, Theorem 4.1].
We present an elementary proof in Section A.1 of the Appendix along the lines
of [81].

Proposition 7.5. The Donaldson-Futaki invariant of the test configuration
X is given by

DF(X ) = DF(Y ) +
νY − γ
n+ 1− u

(
(n+ 1)S

2u
− uµY

n

)
, (7.4)

where we have denoted

νY =
b0

a0

, S =
u∑
i=1

si and µY =
a1

a0

.

The result of Proposition 7.5 also applies also to test configurations which
are not products. Assume that (Y ,L ) is an arbitrary test configuration for
(Y, L). Assume for simplicity that the exponent is 1. Let

R =
∞⊕
k=0

Rk =
∞⊕
k=0

H0(Y, Lk) (7.5)

be the graded coordinate ring of (Y, L) and let F•R be a graded filtration
corresponding to the test configuration Y (cf. Remark 3.15). We have an
induced map

R −→ Rγ :=
∞⊕
k=0

Rk/Fnk−1Rk, (7.6)

where nk is the smallest integer such that FnkRk = Rk, which is finite by
condition (iii) of Remark 3.15. Let Iγ be the ideal generated by

⊕∞
k=0 Fnk−1Rk.

Define the subscheme of least weight of the test configuration Y to be the
subscheme of Y determined by R/Iγ.

The limit of the subscheme of least weight is fixed under the Gm action over
the central fibre. Slightly more generally, the following lemma follows directly
from the definition of the scheme Yγ.

Lemma 7.6. The closure of the orbit of the subscheme of least weight Yγ in
Y is isomorphic to Yγ×A1 as (quasi-projective) polarised varieties. Moreover,
the lifting of the Gm-action on A1 to Yγ×A1 is trivial with a possibly nontrivial
linearisation.

79



Proof. Let Yγ denote the closure of Yγ under the Gm-action. Consider the
linear map

Φ: R→
∞⊕
k=0

∞⊕
i=0

FiRk/Fi−1Rk

J
(7.7)

defined by the projection Rk → Rk/Fnk−1Rk and J is generated by all the
elements which lie in

⊕∞
k=0 Fnk−1Rk. It is straightforward to see that Φ is a

homomorphism of graded rings whose kernel is exactly the ideal Iγ. Finally, the
scheme Yγ is isomorphic to the product Yγ ×A1 since it is the projectivisation
of the ring

ReesF•R/J̃, (7.8)

where J̃ is the ideal generated by (
⊕nk−1

i=1 FiR)ti. The statement about the
action follows since the Gm-action simply scales any graded component of its
coordinate ring with weight −nk.

Example 7.7. If the filtration F•R is the slope filtration from Remark 8.34,
then the subscheme of least weight recovers the subscheme associated to the
ideal I ⊂ OB, in the notation of Remark 8.34.

By a generic hypersurface or complete intersection, we mean one which is
contained in a dense open set of the corresponding Hilbert scheme.

Lemma 7.8. Let the dimension of the subscheme Yγ be greater than or equal to
u. Then a generic complete intersections of codimension u on Y degenerates to
a complete intersection on the central fibre. Moreover, if ϕ is a generic section
of H0(Y, Ls), then the limit of ϕ has weight −ns in the Gm-representation on
H0(Y0,L0).

Proof. Let Z be a complete intersection in Y of codimension no larger than
u. We can identify not just Yγ, but Z ∩ Yγ, which is generically a proper
intersection, with its limit in the central fibre of Y . The locus V in the Hilbert
scheme of complete intersections of the same topological type as Z, whose the
intersection with Yγ is not complete intersection, is determined by any finite
set of generators of the ideal of Yγ in Y . By the assumption on the codimension
of Z, the locus V is a proper closed subset. Hence the locus where the limit is
not a complete intersection is also a proper closed subset. The second claim
follows from the definition of the Gm-action.
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A nontrivial example where the above results can be applied is given in the
following section.

7.2 Complete intersections in flag varieties

In this section we apply the results of Section 7.1 to flag bundles. Fix a smooth
projective variety (B,L), a line bundle A on B and a flag bundle Y = F l r(E)

with an ample underlying vector bundle E of rank rE. Let Y be polarised by
its relative canonical bundle Lσ. Fix a subsheaf F ⊂ E of rank rF and let
(Y ,Lλ(L)) be the test configuration of (Y,Lλ(L)) induced by the degeneration
of the vector bundle E into a direct sum F ⊕E/F defined in Section 5.1. We
also denote q = rankE/F .

Lemma 7.9. The relative dimension of the least weight subscheme in the cen-
tral fibre F l r(EF)0 is given by

Nr,rE ,rF =

p−2∑
i=1

ri(ri+1 − ri) + rp−1(q − rp−1) +
c∑
i=p

(ri − q)(ri+1 − ri), (7.9)

where r = (0, r1, . . . , rc, rE) and

p = min{a : e ≥ a ≥ 1, ra > rE − f} (7.10)

Proof. We will describe the filtration corresponding to the test configuration
F l r(EF) in detail in Section 8.6. However, it suffices to see that the subscheme
fixed by the Gm-action on the central fibre is the intersection of F l r(EF) with
the subscheme

p−1∏
i=1

P(
∧ri

E/F)×
c∏
j=p

P(
∧q

E/F ⊗
∧rj−q

E) ⊂
c∏

k=1

P(
∧rk

E) (7.11)

The dimension of the locus of k-planes containing a fixed q-dimensional vector
space in a Grassmannian of k-planes in an l-dimensional vector space is (k −
q)(l − k). The dimension in Equation (7.9) is then calculated by considering
the flag bundle as an iterated fibration of Grassmannians and using elementary
geometric considerations.

81



Lemma 7.10. Let λ be an element of P(r). The lowest weight γ of the Gm-
action on sections of Lλ is given by

γ =
c∑
i=p

si max{(ri − q), 0}, (7.12)

where sc−i = λi − λi−1 for i ∈ r and p was defined in Equation (7.10).

Proof. Recall that the bundle Lλ is the restriction of the line bundle
⊗c

i=1OP(
∧ri E)(si).

By Borel-Weil (cf. Equation 2.45) the sections of lowest weight over the central
fibre of Y are sections of

p−1⊗
i=1

Ssi(
∧ri

E/F)⊗
c⊗
j=p

Ssj
(∧q

E/F ⊗
∧rj−q

F
)
. (7.13)

The statement of the Lemma follows by the definition of the action, which
scales fibres of F by weight 1 and fixes the complement E/F .

For any tuple of sections

ϕ = (ϕ1, . . . , ϕu) ∈
q∏
i=1

|siLλ(A)| (7.14)

we write
Xϕ = Z(ϕ1) ∩ . . . ∩ Z(ϕu) (7.15)

for their intersection. Let X be the Zariski closure of the orbit of X under the
Gm-action inside Y . Let F be a torsion free, saturated coherent subsheaf of E
and assume that the sections ϕi are generic and that u < Nr,rE ,rF . We are now
in the situation of Lemma 7.8 and hence of Proposition 7.5 with the weight γ
given by Lemma 7.10. We take the polarisation on Xϕ to be the restriction
Lλ(A).

We now revert to the notation of Sections 5.2 and 5.3, where b0, b1, a0

and a1 are the coefficients of the two highest degree terms of polynomials
χ(F l r(E),Lλ(A)k)/ rankEkλ and χ(B, Ẽkλ⊗Ak)/ rankEkλ, respectively. Re-
call that sections of Ekλ correspond to sections of Lλ(A)k and the highest order
terms of the polynomial χ(B, Ẽkλ⊗Ak) and the weight polynomial w(k) of
(Y ,Lλ(A)) agree.
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Proposition 7.11. Let σ be the canonical partition σrF ,r (cf. Definition 4.1).
The difference

∆ = DF(Y )−DF(X ) (7.16)

is positive for the polarisation Lσ if the base B is a curve. If the dimension
dimCB is arbitrary, then ∆ is positive when the polarisation is taken to be
Lσ(Lm) on F l r(E) for m� 0.

Remark 7.12. If B is a curve, E is ample and semistable, then the complete
intersection Xϕ polarised by the restriction of the bundle Lσ is not destabilised
by test configurations induced from extensions of E.

If B is an arbitrary polarised manifold, the same statement is true for
complete intersections of sections of Lσ(Lm)⊗ si , 1 < i < u, for m � 0. It
would be more interesting, although much harder, to study the asymptotics of
test configurations of a fixed complete intersection as m goes to infinity.

Proof of Proposition 7.11. Indeed we have

b0

a0

− γ ≥ 0 (7.17)

with equality only in the case of the action scaling every section with the same
weight. The above inequality is equivalent to

lim
k→∞

wY (k)

kh0
Y (k)

− γ ≥ 0 (7.18)

where h0
Y (k) is Hilbert polynomial of Lσ(A) and w(k) its equivariant analogue.

Write
w(k) =

∑
i

i dimV
(k)
i , (7.19)

where V (k)
i is the ith weight subspace of the representation ofGm onH0(B,Ekσ⊗

Ak). By definition of γ, we have

wY (k) ≥
∑
i

γ dimV
(k)
i = γkh0

Y (k). (7.20)

It suffices to show that we have the inequality

n(n+ 1)

2
≥ µY (7.21)
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We have
µY = µf + µrel, (7.22)

where µf is the slope of a fibre defined by

rankEkσ = Dσ,r

(
kNrE ,r + µfk

NrE,r−1 +O(kNrE,r−2)
)
, (7.23)

for some rational number Dσ,r and µrel = a1
a0
. By the choice of polarisation

we have µf =
NrE,r

2
. The other term µrel is obtained from Riemann-Roch. In

the case dimB = 1 the inequality (7.21) is clear. Consider the line bundle
Lσ(Lm). Then by Equation (5.45) we have

µrel = −b degKB

2 degL
m−1 +O(m−2), (7.24)

so there is an m0 > 0 such that the inequality (7.21) holds for m > m0.

In light of Proposition 7.11, we suspect that one has to start with an
unstable vector bundle E in order to find K-unstable examples of complete
intersections for some choices of the parameters E,F,B and si. We conclude
with the proof of Theorem 7.1 and explain how Theorem 7.3 follows from
Theorem 7.1.

Proof of Theorem 7.1. By Lemma 7.8, Lemma 7.9 and Lemma 7.10 we are in
situation of Proposition 7.5, so the rest of the proof reduces to a straightforward
calculation. Recall from Chapter 5 that we have

b0 =
h2(λ)rF (rEµE + µF )

rE(rE + 1)
+
c2(λ)rF (rEµE − µF )

rE(rE − 1)
,

b1 = HλA2(Ẽ) + c1(λ)

(
µE +

rF
rE

(1− g)

)
,

a0 = c1(λ)µE,

and

a1 = 1− g,

84



where ci(λ) denotes the ith elementary symmetric polynomial of λ = (λ1, . . . , λc).
After some algebraic manipulation we can write DF(X ) = Cg +O(g0) where

C = D
(
h2(λ)(n+ 1)(n− u)rF rE

2(µE − µF )− γuc1(λ)µE (7.25)

− c1(λ)2rE(rE + 1)rF
(
(n2 + n− nu− rEu)µE − (n+ 1)(n− u)µF )

) )
(7.26)

where n = NrE ,r + 1 and D =
(
rE

2(rE
2 − 1)n(n+ 1− u)

)−1. Alternatively we
can write

DF(X ) = D (CE degE + CF degF ) g +O(g0), (7.27)

where we have denoted

CE = (rE
2 − 1)uc1(λ)(rF c1(λ)− rEγ)− rF

rE
CF (7.28)

and

CF = (NrE ,r + 1)(NrE ,r − u)
(
(rE + 1)c1(λ)2 − 2rEh2(λ)

)
. (7.29)

Proof of Theorem 7.3. In the situation of Theorem 7.3 we have degE = degF .
Computing the sign of the sum CE + CF amounts to solving a polynomial
inequality in e, λ, f and u. Let p be an integer between 1 and e− 1. Since we
are assuming e− f ≥ p, we also have γ = 0 by Lemma 7.10. Then there exist
positive constants D′ and D′′ such that

D′(CE + CF ) = D′′(u− 1)

− (rE − rF )(rE − p− 1)(rE − p)(rE − p+ 1)(p− 1)p(p+ 1)

− rE(rE − 1)(rE + 1)(rE − rF − p)p.
(7.30)

Hence assuming u = 1 implies immediately that CE + CF < 0 so the test
configuration induced from (Y ,L ) as described on page 76. The code for
repeating the calculations and for simulating more examples is contained in
[47, Futaki invariants of complete intersections].
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Remark 7.13. While the inequality CE +CF < 0 seems to hold more generally
we only know how to prove it in the Grassmannian case.

Example 7.14 (Projective bundles). Equation (7.25) gets a very nice form for
projective bundles. In the notation used in the proof of Theorem 7.1, letting
λ = (1) gives

DF(X ) =
((rF − γu) degE − (rE − u) degF

rE2(rE + 1− u)

)
g +O(g0). (7.31)

This is the example given by Stoppa-Tenni [81]. Note that the convention the
authors use for PE is dual to ours.
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Chapter 8

Filtrations and relative K-stability

The K-stability of a projective variety with the structure of a projective family
over a base scheme is in certain cases conjecturally characterised in terms of
two types of simple test configurations. On the one hand one can look at
test configurations which are equivariant with respect to the projection to the
base, and on the other hand one can pull back test configurations from the
base. Partial results are known in the case of toric bundles [5], projective
bundles [68], blowups [8, 76, 68] and flag bundles (Chapters 5 and 6). We
define the notion of relative K-stability, which is a conjectural refinement of
K-stability, defined in Chapter 3. Given a projective morphism p : Y → B

a relative test configuration is a projective morphism Y → B × A1, with a
Gm-action inducing a test configuration on each fibre of p.

We introduce and study filtrations of graded coherent sheaves of algebras in
Section 8.1 with the aim of generalising the Witt-Nyström-Székelyhidi theory
of filtrations in the study of K-stability [89, 85] to the context of relative K-
stability. We show how this relates to Székelyhidi’s notion of K-stability (see
Remark 3.15) in Section 8.2. The motivation for studying filtrations of sheaves
is that it allows us to give a unified treatment of several constructions that
have appeared in the theory of K-stability, as well as constructions which we
believe to be new. Related work was done by Ross and Thomas [69].

In Section 8.3, we propose an algebraic solution to the problem of inter-
polating test configurations, which was solved analytically in [71]. This is an
application of the constructions defined in Section 8.1 and Section 8.2. Our
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approach works when the test configurations are defined for different polarisa-
tions as well. As an application, we prove that the K-unstable locus in V(X) is
open in the Euclidean topology. The behaviour of convex transforms as well as
further examples of the interpolation construction are studied in Section 8.4.

In Section 8.5, we apply the constructions to give a natural definition of
pulling back test configurations from the base scheme B. We also give an
overview where test configurations of this type have appeared in the literature.
Finally, we discuss natural filtrations of the coordinate algebras of flag bundles
from the new point of view in Section 8.6.

Remark 8.1 (A note on terminology). Throughout this chapter the word rela-
tive refers to working over a base scheme, not to be confused with the stability
notion used in the extremal YTD correspondence.

Remark 8.2. As far as we know, apart from Theorem 8.26 and Proposition
8.30 (Theorem E), the content of this Chapter is new even when working over
SpecC.

8.1 Filtrations and projective families

By convention, our algebras are Zn≥0-graded. Let B be a scheme over the
complex numbers. If A is a graded sheaf of OB-algebras, we assume that
A0 = OB.

Definition 8.3 (Admissible filtrations). Let

A =
∞⊕
k=0

Ak (8.1)

be a sheaf of quasicoherent graded OB-algebras over a scheme B. Then an
admissible filtration of A is a filtration of coherent subsheaves

F• : 0 = F−1A ⊂ OB = F0A ⊂ F1A ⊂ · · · ⊂ A, (8.2)

such that it is

(i) multiplicative, the filtration satisfies the relation (FiA) (FjA) ⊂ Fi+jA,
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(ii) homogeneous, if U is an open set in B, the homogeneous parts of any
section of FiA(U) are all in FiA(U), and

(iii) exhaustive, it satisfies
⋃∞
i=0 FiA = A.

Remark 8.4. The property F0A = OB can be replaced by saying that a filtra-
tion

· · · ⊂ FiA ⊂ Fi+1A ⊂ · · · (8.3)

is discrete, meaning that FjA = OB for some j. Any such filtration can be
uniquely reindexed as an admissible filtration.

There is another equivalent convention for defining an admissible filtration
by reversing the order of the filtration. Codogni and Dervan described the
process of translating between the two points of view in [21] in the nonrelative
case. We work with increasing filtration as a matter of convenience while
developing the theory.

Definition 8.5. Let FAlgOB denote the category of pairs (A, F•A) such that

(i) A is a graded coherent OB-algebra, which is locally finitely generated
over OB and

(ii) F•A is an admissible filtration.

The morphisms are grading and filtration preserving homomorphisms. We
refer to the objects admissibly filtered graded OB-algebras and often simply
refer to them by the symbol F•A.

Definition 8.6. Let f : A → B be an surjection of graded OB-modules and
fi is the restriction of f to the subsheaf FiA. We define the image filtration
(f∗F )• B by

(f∗F )iB = im fi. (8.4)

Definition 8.7. Let g : A → B be a morphism of graded filtered OB-algebras
and let G•B be a filtration of B. We define the induced filtration (f ∗G)•A by

(f ∗G)iA = A ∩GiB = {a ∈ A : f(a) ∈ GiB}. (8.5)
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Remark 8.8. If f is an isomorphism, these two constructions are clearly inverse
to one another, that is we have identities

f∗f
∗G•A = G•A (8.6)

and
f ∗f∗F•A = F•A. (8.7)

Definition 8.9. Let E be a sheaf of OB-modules and let HiA ∈ FAlgOB . We
define the derived filtration [15], also denoted by H•E , by

HiE = (HiA)E . (8.8)

Lemma 8.10. Let f : A → B be a (grading-preserving) morphism of filtered
graded sheaves of OB-algebras. Then the image filtration and induced filtration,
when defined, are admissible filtrations in the sense of Definition 8.3.

Proof. We verify the conditions in Definition 8.3 starting with the image fil-
tration. Fix a filtered algebra F•A ∈ FAlgOB . To show (i), let si and sj

be sections of f∗FiA and f∗FjA over U ⊂ B, respectively. Then making U
smaller if necessary, we have elements ti and tj in FiA(U) and FjA(U), respec-
tively, such that f(ti) = si and f(tj) = sj. The section titj is in Fi+jA(U), so
f(titj) is in (f∗F )i+jA(U). Homogeneity and exhaustivity follow easily since
f preserves the grading and is a surjective map of sheaves.

The induced case is similar. To check multiplicativity, let si ∈ g∗GiB(U)

and sj ∈ g∗GjB(U). Since G•B is admissible and g is a homomorphism,
we have g(sisj) ∈ Gi+jB(U) and hence sisi ∈ g∗Gi+j(U). Homogeneity and
exhaustivity are again trivial, since the map g preserves the grading.

Tensor algebras of filtered modules are naturally endowed with an admis-
sible filtration.

Definition 8.11 (The tensor algebra of a filtered module). Let

F•E : 0 = F0E ⊂ F1E ⊂ · · · ⊂ FnE = E (8.9)

be a filtered sheaf of OB-modules. The tensor algebra of E is naturally a
filtered algebra by setting

GpT (E) = OB ⊕
∞⊕
k=1

⊕
i1+···+ik=p

Fi1E ⊗ · · · ⊗FikE (8.10)
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for p ∈ Z>0.

Lemma 8.12. The filtration defined in Equation (8.10) is admissible.

Proof. Follows directly from the definitions.

Definition 8.13 (Tensor products of filtered algebras). Let F•A and G•B be
filtered sheaves of graded OB-algebras. Define the tensor product

(F•⊗G•)p (A⊗OB B) =
⊕
i+j=p

FiA⊗OB GjB, (8.11)

which is a filtered Z2-graded sheaf of coherent OB-algebras.

Lemma 8.14. Tensor products of filtered algebras are commutative and asso-
ciative.

Definition 8.15. The Veronese subalgebra A(d) is defined as the subalgebra

A(d) =
∞⊕
k=0

Adk. (8.12)

Similarly, if C is a ZN≥0-graded sheaf of algebras, define the a = (a1, . . . , aN)-
diagonal

Ca =
∞⊕
k=0

C(ka1,...,kan). (8.13)

Definition 8.16 (Diagonal subalgebras). Let F•A and G•B be filtered sheaves
of graded OB-algebras. For any pair (a, b) of nonnegative integers, we define
the (a, b)-diagonal product of the two filtered algebras by(

F•⊗(a,b) G•
)

(A⊗B) = (A⊗OB B)(a,b) ∩ (F•⊗G•)• (A⊗OB B) . (8.14)

We refer to this filtration the (a, b)-diagonal product of two filtered algebras.
Define weighted diagonal products of any finite collections of filtered sheaves
of algebras similarly.

Lemma 8.17. The diagonal product is a well-defined operation on FAlgOB .

Proof. This is a straightforward verification.
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Definition 8.18 (Filtrations generated at degree 1). Let F•E be a filtered
sheaf of OB-modules and A a graded sheaf of OB-algebras such that A1 = E .
We say that the algebra A is generated at degree 1 so that there is a surjective
morphism

p : S(E)→ A. (8.15)

Let F•S(E) be the filtration on S(E) induced by the filtration on T (E) defined
in Definition 8.11. Define the filtration G•A of A generated by F•E to be the
image filtration p∗F•A.

Lemma 8.19. A filtration generated at degree 1 is admissible.

Proof. Follows from Lemma 8.10 and Lemma 8.12.

Definition 8.20. We define the Rees algebra and the associated graded alge-
bra of F•A as

(i) Rees(F•A) = ⊕i≥0(FiA)ti ⊂ A[t],

(ii) gr(F•A) = ⊕i≥0(FiA)/(Fi−1A),

respectively. We say that a filtration F•A is finitely generated if Rees(F•A)

is locally finitely generated as an OB-algebra. Note that both objects are
bigraded. We refer to the two gradings by the A-grading and the t-grading.

Lemma 8.21. Let f : A → B be a morphism of graded sheaves of OB-algebras.
The tensor product preserves finite generation of admissible filtrations. If we
assume the homomorphism f is surjective, the same is true for the image
filtration. Similarly, if the homomorphism f is injective, the induced filtration
is finitely generated.

Proof. This can be easily seen by relating the Rees algebras. Let F• and G•
be filtrations for A and B, respectively, and f : A → B is a map preserving the
grading. Then we have natural morphisms

Rees(F•A)→ Rees(f∗F•B) (8.16)

and
Rees(f ∗G•A)→ Rees(G•B) (8.17)
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which preserve the grading. The claims for pushforwards and pullbacks then
follow easily. Note that we must assume that f is a surjection in the pushfor-
ward case. In the tensor product case we have a natural isomorphism

Rees (F•A⊗OB G•B) ∼= Rees(F•A)⊗C[t]Rees(G•B) ⊂ (A⊗B) [t] (8.18)

which immediately implies the claim.

Remark 8.22 (Filtrations of coordinate rings). Let (B,L) be a projective scheme
and denote R =

⊕∞
k=1H

0(B,Lk). Definition 8.3 contains the special case of
admissible filtrations as defined [85] in of R by taking the base to be a point.

8.2 Relative K-stability

In this section we define relative test configurations and describe their rela-
tionship to admissible filtrations discussed in Section 8.1.

Fix a projective scheme B of dimension b with an ample line bundle L and
a locally finitely generated graded sheaf of OB-algebras A. Denote the relative
projectivisation of A by Y = ProjB(A) with the projection p : Y → B. We
assume that A is locally finitely generated at degree 1, which means that there
exists a surjective homomorphism

S(A1)→ A (8.19)

and hence an embedding
ProjB A → PA1. (8.20)

Definition 8.23. Define the graded algebra of sections of L by

RL =
∞⊕
k=0

H0(B,Lk) (8.21)

and the associated graded sheaf of algebras by

RL =
∞⊕
k=0

Lk. (8.22)
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Proposition 8.24. The Rees algebra of a graded sheaf of coherent OX-algebras

Rees(F•A) =
∞⊕
k=0

FkAtk (8.23)

is a flat sheaf of graded OA1-algebras.

Proof. The claim is local on B. The Rees algebra of a k[t]-module is torsion
free as a k[t]-algebra. A well known flatness criterion states that a module
over a principal ideal domain is flat if and only if it is torsion free [31, Section
6.3].

We say that A is ample if the O(d)-line bundle on Y defines an embedding
for some positive integer d. If this is true for d = 1, A is very ample.

Definition 8.25. Let Y be a scheme, p : Y → B a projective morphism and
L a p-ample line bundle. A relative test configuration, or p-test configuration
(Y ,L , ρ) for the pair (Y,L) is defined by

• a flat morphism f : Y → A1 which factors through B × A1, along with
an isomorphism ϕt : f−1{1} ∼= Y ,

• an f -ample line bundle L on Y such that Lt such that the isomorphism
over the fibre f−1{1} identifies the line bundles L1 and L.

• an algebraic action ρ : Gm×Y → Y which makes the projection to B×
A1 equivariant with respect to the trivial action on B and the standard
action on A1, together with a L -linearisation action on Y that covers
the usual action on A1.

The integer r is called the exponent of the p-test configuration. The fibre
f−1{0} is called the central fibre. If L is ample, a p-test configuration is a
test configuration in the sense of Definition 3.1, in which case we say that Y

is an ample p-test configuration.

Theorem 8.26. A finitely generated admissible filtration F•A determines a
p-test configuration (

ProjB×A1Rees F•A,O(1)
)

(8.24)

with its natural Gm-action. Conversely, a p-relative test configuration (Y ′,L )

of ProjB A determines a finitely generated admissible filtration G•A.
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Proof. Let the group Gm act with its natural action on the line A1 and extend
it trivially to the product B×A1. There is a natural linearisation of this action
on the sheaf Rees F•A with the following local description. Let U be an open
set in B such that the projection p

∣∣
U
corresponds to a graded A0-algebra A,

where A0 is the coordinate ring of B over U . The filtration F•A restricts to
an admissible filtration F•A. Then we have a commutative diagram

ReesF•A ReesF•A[s±1]

A0[t] A0[t, s±1]

t 7→ s−1t

t 7→ s−1t

with obvious notation. This defines a Gm-linearisation on A over U compatible
with the grading. The morphisms pU glue as U ranges over an open cover of
B to determine a Gm-scheme (ProjB×A1Rees F•A,O(1)) with an equivariant
projection down to B × A1. The projection to A1 is flat by Proposition 8.24
and the central fibre is isomorphic to

ProjB gr(F•A) (8.25)

with a Gm-action defined by the t-grading.
Given a p-test configuration (Y ,L ), we produce an admissible filtration

as follows. By replacing L with a power if necessary, we may assume that we
have an embedding

ι : Y −→ Pg∗L , (8.26)

where g is the projection Y → B×A1. Using the identification (Y1,L
∣∣
B×{1})

∼=
(Y,L) we obtain a natural map

h : A −→
∞⊕
k=0

g∗

(
L
∣∣
B×{1}

)⊗ k
, (8.27)

which we may take to be an isomorphism by [75, Lemma 29.14.4].
For any sufficiently small affine neighborhood U ∼= SpecA0 ⊂ B, we have

a diagram
g−1U ∼= ProjSpecA0

S PSpecA0S1

SpecA0

ι

g
∣∣
U
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where S is a graded A0-algebra. Since the projection g is equivariant for the
trivial action on U , the linearisation of the G-action determines a representa-
tion on A1. This determines a splitting A1 =

⊕r
i=1Wi by weight. We obtain a

presheaf of filtered OB-modules as U ranges over sufficiently small affine open
sets of B. The associated sheaf generates an admissible filtration G•A of A
by Lemma 8.19.

Remark 8.27. If B = SpecC, this theorem was proved by [85].
If X = Y = B, L is an ample line bundle on X and p is the identity

morphism, this theorem reduces to the blowing up formalism due to Mumford
[61], Ross and Thomas [69] and Odaka [64]. Up to passing to a Veronese
subalgebra, any finitely generated admissible filtration of the algebra RL can
be obtained from a filtration

I1 ⊂ · · · ⊂ IN ⊂ OX . (8.28)

See Remark 8.34 for an outline of this construction.

Given an admissible filtration FiA we define the associated Hilbert, weight
and trace squared functions by

h(k) =
∞∑
i=1

χ

(
B,

FiAk
Fi−1Ak

)
w(k) =

∞∑
i=1

−iχ
(
B,

FiAk
Fi−1Ak

)
and

d(k) =
∞∑
i=1

i2χ

(
B,

FiAk
Fi−1Ak

)
,

respectively. If the p-test configuration given by Theorem 8.26 is ample, the
functions h(k), w(k) and d(k) are equal to the functions defined in Lemma
3.4. In this case the Donaldson-Futaki invariant is defined normally by Equa-
tion (3.4).

Definition 8.28 (Relative K-stability). Let TestB(Y, L) be the set of p-test
configurations of (Y, L). We define K-stability relative to p in the same way we
defined K-stability in Definition 3.5 but by restricting the set of test configu-
rations to ones which lie in TestB(Y, L).
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Definition 8.29. Consider the equivalence relation on the set of p-test con-
figurations generated by the following three relations.

(i) Identify a p-test configuration Y with any test configuration with which
it is Gm-equivariantly isomorphic.

(ii) Identify any rescaling of the Gm-action on (Y ,L ) (pullback by a cover
of A1, cf. Remark 3.7).

(iii) Identify any pair (Y ,L ) and (Y ,L d) of p-test configurations for all
d > 1.

Following Odaka [65] we call equivalence classes under the above identifica-
tions p-test classes for test configurations. Test configurations up to the first
two relations are called p-test degenerations. Note that we will use the same
terminology for arbitrary filtrations later, see Definition 8.36.

Proposition 8.30 (Theorem E). The two constructions in Theorem 8.26 in-
duce a 1-1 correspondence between finitely generated filtrations of A up to
isomorphism and Veronese subalgebras, and p-test classes of (Y,L).

Proof. It suffices to show that the two constructions are inverses to one another
up to the stated identifications.

An automorphism ϕ of a filtered algebra F•A induces an automorphism of
the Rees algebra, and hence of its projectivisation. Conversely, any equivariant
isomorphism which preserves linearisations clearly produces an automorphism
of the filtered algebra.

Similarly, the admissibility criterion uniquely fixes the scale of the action,
while the final identification corresponds to identifying Veronese subalgebras
of F•A. This completes the proof.

We extend the notion of ampleness to admissible filtrations through am-
pleness of their finitely generated approximations.

Definition 8.31 (Ampleness for filtrations). Let F•A be the filtered algebra
and define the filtrations F (k)

• A for all k ∈ N to be the filtrations of A(k)

generated by the filtration F•Ak. We say that an element of FAlgOB is ample
if the sequence of filtrations F (k)

• A determine p-ample test configurations for
all k ∈ N.
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Definition 8.32. For any line bundle A on B, define the twisted polarisation

L(A) = L⊗ p∗A. (8.29)

We abuse notation by denoting the twisted polarisation on any test config-
uration of Y similarly.

Lemma 8.33. Let (Y ,L ) be a p-test configuration for (Y, L) and let L be an
ample line bundle on B. Then (Y ,L (Lm)) is ample for m� 0.

Proof. It suffices to check ampleness over the central fibre B×{0}, over which
the line bundle L (Lm) restricts to F(Lm) for some relatively ample line bundle
F by construction. This is ample by [43, Proposition II.7.10].

We close the section on a brief discussion of slope stability which provides
a case where amplitude has been studied in detail in Ross and Thomas [68].

Remark 8.34 (Slope stability). Let ι : B′ ⊂ B is a subscheme. We define a
filtration of R by vanishing orders along B′. Denote the ideal sheaf of B′ by
IB′ and consider the filtration

G•L
a : I bLa ⊂ I b−1La ⊂ · · ·ILa ⊂ La (8.30)

for any pair of natural numbers a and b. Assume from now on that a and b
are coprime. The tensor algebra generated by G•L

a (cf. Definition 8.18) is
admissibly filtered by Lemma 8.12.

For example, if a = b = 1 we write

OB ⊂ IL⊕I 2L2 ⊕I 3L3 ⊕I 4L4 ⊕ · · ·
⊂ L⊕IL2 ⊕I 2L3 ⊕I 3L4 ⊕ · · ·
⊂ L⊕ L2 ⊕IL3 ⊕I 2L4 ⊕ · · ·

...
...

...

⊂ R = L⊕ L2 ⊕ L3 ⊕ L4 ⊕ · · · .

It is easy to pick out the filtration from the increasing sequence of upper
triangular subsets starting from the top left corner starting with

OB ⊂ (OB ⊕IL) ⊂
(
OB ⊕ L⊕I 2L2

)
⊂ · · · . (8.31)
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We denote the associated p-test configuration by Xc for c = a
b
. If we assume

that c ≤ Sesh(B′, L), where

Sesh(B′, L) = sup {c ∈ Q>0 : Lr⊗I cr
B′ is globally generated for r � 0} ,

(8.32)
then the p-test configuration Xc is ample (up to an equivariant contraction
in the case c = Sesh(B′, L)). This fact is due to Ross and Thomas, who also
found a beautiful formula for the Donaldson-Futaki invariant in this case in
terms of the slope of the triple (B′, L, c)1 [68].

More complicated filtrations of the structure sheaf also yield admissible
filtrations in a similar manner. Conversely, let F•RL be an admissible filtration
which is generated in degree 1. Let N be the smallest integer such that FNL =

L. For any 1 ≤ i ≤ N , we can define the ideal sheaf Ii ⊂ OX to be the ideal
sheaf locally generated by sections of the subsheaf FiL. We obtain a filtration

0 ⊂ I1 ⊂ · · · ⊂ IN ⊂ OX . (8.33)

An alternative construction of the ideal sheaves Ii, starting with an arbitrary
test configuration, can be found in Odaka [64, Proposition 3.10] or Ross and
Thomas [69].

8.3 Convex combinations of test configurations

The aim of this section is to define a convex structure on equivalence classes
of test configurations. The idea is very simple and is based on Segre products
of filtered coordinate algebras. Consider the following example.

Example 8.35 (A description of the convex combination of test configurations
when the base B is a point). Let V andW be complex vector spaces and let X
be a projective variety with two embeddings ι1 : X ⊂ P(V ) and ι2 : X ⊂ P(W ).
Fix two 1-parameter subgroups of SL(V ) and SL(W ), which determine actions

α : P(V )×Gm → P(V )

1Proposition 5.5 is proved using this formula.
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and

β : P(W )×Gm → P(W ),

respectively, and fix two positive integers a and b. Then we have closed im-
mersions

X
∆−→ X ×X → P(SaV ⊗SbW ) (8.34)

and an associated family

X ×Gm
∆−→ X ×X ×Gm ⊂ P(SaV ⊗SbW )×Gm. (8.35)

Here the Gm-action on SaV ⊗SbW is induced from α : t 7→ αt and β : t 7→ βt

by setting

(α, β)t(v1⊗ · · ·⊗ va⊗w1⊗ · · ·⊗wb) = (αtv1⊗ · · ·⊗αtva⊗ βtw1⊗ · · ·⊗ βtwb).
(8.36)

We define the weighted product test configuration to be the Zariski closure of
the image of the diagonal in Equation (8.35). This is clearly a test configuration
for (X,La1⊗Lb2), where L1 and L2 are the two restrictions of the hyperplane
bundle under the embeddings ι1 and ι2, respectively.

We write the resulting test configuration additively as

a[α] + b[β], (8.37)

where the brackets denote taking the product test configuration associated to
the Gm-action under the respective embeddings of X into projective space.
The test class determined by Equation (8.35) (cf. Definition 8.29 and Remark
3.7) can be written as

(1− t)[α] + t[β], (8.38)

where the parameter t is taken to be b
a+b

.

From now on, we identify the set of p-test configurations of Y with the
set of admissibly filtered algebras F•A which satisfy ProjB A ∼= Y and whose
filtration F•A is finitely generated by Theorem 8.26. This justifies the following
definition, modelled after Odaka [65].
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Definition 8.36 (Test degenerations and test classes). Let p : Y → B be a
projective morphism of normal schemes. Define the set of p-test degenerations
of Y to be the set TestB(Y ) of admissibly filtered elements F•A ∈ FAlgOB
such that ProjB A ∼= Y considered up to isomorphisms.

Also define the set Testp(Y ) of p-test classes by additionally identifying
Veronese subalgebras in Testp(Y ). We have a natural map

Testp(Y ) −→ Testp(Y ). (8.39)

If we wish to fix a relatively ample line bundle L on Y (respectively, a ray
of relatively ample line bundles), we write Testp(Y,L) (resp. Testp(Y,L)) for
elements of Testp(Y ) (resp. Testp(Y )) which define a test degenerations (resp.
test classes) for (Y,L).

We denote TestSpecC(B) = Test(B).

We now state and prove Theorem F. Let IQ denote the unit interval [0, 1]∩Q
and let ∆N−1 be theN−1 dimensional simplex inQN defined by t1+. . .+tN = 1

and ti ≥ 0 for i = 1, . . . , N .

Theorem 8.37 (Convex combinations of test configurations). For any N ∈
Z≥2, there exists a map

ConvN : Testp(Y )N ×∆N−1 −→ Testp(Y ) (8.40)

satisfying

(i) ConvN (τ, ei) = τi, where ei is the ith unit vector and τ = (τ1, . . . , τN)

are p-test configurations of (Y,Li),

(ii) ConvN(τ, t) is an element of Testp (Y,Lt), where Lt is the line bundle∑N
i=1 tiLi, and

(iii) if we take B = SpecC and assume that τi are finitely generated, the
Donaldson-Futaki invariant of ConvN(τ, t) is continuous in the second
variable.

Theorem 8.38 (Theorem G). The K-unstable locus in V(X) (cf. Equation
(3.6)) is open in the Euclidean topology.
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Proof. Fix a basis L1, . . . , LN of the Picard group of X and let L be a K-
unstable polarisation. Fix a test configuration X for (X,L) with negative
Donaldson-Futaki invariant. Let t be a point in INQ , s = 1−

∑N
i=1 ti and let U

be a neighbourhood of 0 in INQ such that (1− s)L+
∑N

i=1 tiLi is ample for all
t ∈ U .

For any t ∈ U , define the test class [Xt] = (1− s)[X ] +
∑N

i=1 ti[Xi], where
Xi are trivial test configurations for (X,Li). By Theorem 8.37, there is an
open neighbourhood V ⊂ U of 0 such that DF(Xt) is negative for all t ∈ V .
The set V determines an open neighbourhood of L in Amp(X) of K-unstable
polarisations. Since L was an arbitrary K-unstable polarisation, this completes
the proof.

Remark 8.39. It makes sense to extend the definition of the Donaldson-Futaki
invariant of a weighted product (1 − t)τ1 + tτ2 for irrational values of t by
continuity.

For simplicity of exposition we restrict to the case a pairwise convex com-
bination. The proof of the general case of Theorem 8.37 follows the same
argument with minor adjustments which are outlined in Remark 8.45 and Re-
mark 8.46.

Recall first a basic algebraic fact.

Lemma 8.40. Let f : S → T be homomorphism of commutative rings and let
A and B be T -algebras. Let AS and BS be the S-algebras determined by the
map f . Then there is a natural surjective homomorphism

g : AS ⊗S BS → A⊗T B. (8.41)

Proof. The tensor product AS ⊗S BS is a quotient of A⊗ZB by the ideal
generated by elements f(s)a⊗ b− a⊗ f(s)b for s ∈ S, a ∈ A and b ∈ B. This
ideal is contained in the ideal of A⊗T B in A⊗ZB, hence identifying both
algebras in Equation (8.41) as quotients of A⊗ZB yields the claim.

Lemma 8.41 ([53, Example 1.2.22]). Let L1 and L2 be ample line bundles on
a projective scheme X. Then the natural map

H0(X,La1)⊗CH
0(X,Lb2) −→ H0(X,La1⊗Lb2) (8.42)

is surjective for a, b� 0.
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Corollary 8.42. Let L1 and L2 be p-ample line bundles on Y . Then the
natural map

p∗La1⊗OB p∗Lb2 −→ p∗
(
La1⊗OY Lb2

)
(8.43)

is surjective for a, b� 0.

Proof. By [43, Corollary 12.9] we may assume that the pushforwards p∗La1,
p∗Lb2 and p∗(La1⊗Lb2) are vector bundles on B. It suffices to check that the
map in Equation (8.43) is surjective on fibres, which follows from 8.41.

Let (a, b) be a pair of nonnegative integers and F•A and G•B two elements
of FAlgOB with chosen isomorphisms

ProjB A ∼= Y and ProjB B ∼= Y. (8.44)

Write RA and RB for the graded algebras associated to the two Serre line
bundles. We have natural morphisms

A → p∗RA and B → p∗RB. (8.45)

By [75, Lemma 29.14.4], there exists a k0 > 0 such that the maps in Equa-
tion (8.45) are isomorphisms in degrees larger than k0. Therefore the map

ϕ : A⊗OB B −→ p∗RA⊗OB p∗RB (8.46)

is an isomorphism in degrees larger than k0. Using the isomorphisms in Equa-
tion (8.44) and Corollary 8.42, we obtain a surjective morphism

ϕ : A(a)⊗OB B(b) −→ p∗
(
(RA)(a)⊗OY (RB)(b)

)
(8.47)

for a, b > k0.
We will from now on use a mix of additive and multiplicative notation for

both test degenerations and line bundles.

Definition 8.43. For any nonnegative integers a and b we define the weighted
product of two test degenerations

a[F•A] + b[G•B] (8.48)
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to be given by the filtration

ϕ∗(F•⊗(ma,mb) G•)(A⊗OB B), (8.49)

where ϕ∗ denotes taking the image filtration defined in Definition 8.6 and m is
chosen to be the smallest integer so that the statement of Corollary 8.42 and
surjectivity of Equation (8.45) hold.

Theorem 8.44. If τ1 and τ2 are p-test degenerations for the relatively ample
line bundles L1 and L2, the diagonal product determines a p-test configuration
for each polarisation on the line segment between L1 and L2 in the cone V(Y )

of polarisations (cf. Equation (3.6)).

Proof. This follows from Lemma 8.16 and the fact that we have(
ProjB

∞⊕
k=0

p∗
(
Lak1 ⊗Lbk2

)
,O(1)

)
∼=
(
Y,Lak1 ⊗Lbk2

)
. (8.50)

Remark 8.45 (Diagonals in finite products of algebras). Diagonal products
make sense for products of three or more elements of FAlgOB . First of all,
Lemma 8.41 and Corollary 8.42 generalise to finite products of line bundles
of the form La11 ⊗ · · ·⊗L

aN
N by an easy induction. This avoids the difficulty

of having to make a choice of integer m in the construction of the convex
combinations of test configurations several times.

In particular, if F•A, G•B and H•C are in FAlgOB , the (a, b, c) diagonal
can be written as a product pairwise diagonals as

F•⊗(a,b)G•⊗(1,c) H• = F•⊗(a,1)⊗G•⊗(b,c) H•

= F•⊗(a,1)⊗H•⊗(c,b) G•,
(8.51)

where we omit writing the algebra A⊗OB B⊗OB C. The products are clearly
associative so we have omitted the parentheses. Verifying Equation (8.51) only
needs to be done at the level of the diagonal subalgebras, since the filtration
on diagonal is simply the restriction of the tensor product filtration. The two
identities generate the natural associativity and commutativity properties of
the pairwise diagonal product in FAlgOB . The same relations descend to the
weighted products in TestB(Y ).
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Remark 8.46. There are several potentially confusing aspects about the pre-
vious definitions. First, it makes sense to reparametrise the test class repre-
sented by aτ + bτ by rational numbers in the interval IQ. However, convex
combinations are not well defined for test classes since the diagonal product is
clearly not invariant under replacing one of the filtered algebras by a Veronese
subalgebra

Second, in order to define the filtration associated to the weighted product,
we needed to assume that a and b were sufficiently large in order to make the
multiplication maps in Lemma 8.41 and Corollary 8.42 surjective. This can be
circumvented by replacing both underlying line bundles by a common power
at the outset.

Third, while our construction gives no way of choosing a unique convex
combination in TestB(Y ), we see no need to do this. We are ultimately in-
terested in test classes. By Remark 8.45, a convex combination of multiple
elements of TestB(Y ) can be done simultaneously and there is no need to iter-
ate a pairwise construction. For test degenerations τ = ([F 1A1], . . . , [FNAN ])

and rational numbers

t = (t1, . . . , tN) ∈ ∆N−1 ⊂ INQ (8.52)

we define ConvN(τ, t) to be the test class of the (mt1, . . . ,mtN)-diagonal in
the filtered algebra

N⊗
i=1

F•Ai, (8.53)

where m is a sufficiently large and divisible integer.

We summarise the contents of Remark 8.45 and Remark 8.46 in the follow-
ing proposition.

Proposition 8.47. Given N elements of TestB(Y ), there is uniquely defined
map from IN to the set of test classes of Y relative to p. This map is naturally
fibred over a subset of the set of rays of p-ample line bundles on Y .

Before proving property (iii) of Theorem 8.37 we state the following lem-
mas. Donaldson reduced the calculation of the total weight to an nonequivari-
ant calculation. The weight calculation done in Chapter 5 are based on this
idea. See also [70, Section 2.8.1] for a clear exposition.
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Lemma 8.48. Let X0 be a projective Gm-scheme over the complex numbers
with an ample Gm-linearised line bundle L. Then there exists a polarised
scheme (Y ,HL) such that the the weight polynomial is given by

trH0(X0, L
k) = χ(Y ,Hk

L)− χ(X0, L
k). (8.54)

Dervan proved the following generalisation of Donaldson’s formula.

Lemma 8.49 ([22, Lemma 2.30 (iv)]). Keep the notation of Lemma 8.48 and
let A be a Gm-linearised line bundle on X0. The total weight of the Gm-
representation on the vector space H0(X0, L

k⊗A) is given by

trH0(X0, L
k⊗A) = trH0(X0, L

k)−
∫
Y

c1(HL)n · c1(HA)

n!
kn+O(kn−1), (8.55)

for some line bundle HA on Y.

Corollary 8.50. Keep the notation of Lemma 8.48 and let Li be ample Gm-
linearised line bundles on X0 for 1 ≤ i ≤ N . We have an identity

trH0(X0,
N⊗
i=1

Laiki ) = C0(a1, . . . , aN)kn+1 + C1(a1, . . . , aN)kn +O(kn−1).

(8.56)
where C0(a1, . . . aN) and C1(a1, . . . , aN) are polynomials in a1, . . . , aN .

Proof. Apply Lemma 8.49 and Lemma 8.48 to

L = Lkj and A =
N⊗

i=1,i 6=j

Laikj (8.57)

for j = 1, . . . , N .

Claim 8.51. Property (iii) of Theorem 8.37 holds.

Proof. We show that the Donaldson-Futaki invariant is a continuous rational
function in t for t ∈ ∆N−1.

By the Riemann-Roch formula, there exist polynomials c0 and c1 in ai such
that

h0(X,
⊗

Laiki ) = c0k
n + c1k

n−1 +O(kn−2). (8.58)
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In particular, there exist positive numbers c0,i such that

c0 =
N∑
i=1

c0,ia
n
i +O(an−1

1 , . . . , an−1
N ), (8.59)

since Li are all ample.
By Corollary 8.50, the weight function is similarly a polynomial in the ai.

We conclude that the function

t 7→ DF

(
t1τ1 + · · ·+ tN−1τN−1 + (1−

N−1∑
i=1

ti)τN

)
(8.60)

is continuous rational function in t ∈ ∆N−1, since the denominator is always
positive.

Remark 8.52. There is an alternative way to see that the Donaldson-Futaki
invariant is continuous which uses an intersection theoretic formula for the
Donaldson-Futaki invariant [56, Proposition 6] which holds for normal test
configurations. Assume that L1 and L2 are ample line bundles on X and
F•RL1 and G•RL2 are admissible. The bigraded Proj

Z = ProjA1Rees F•
(
RL1 ⊗C[t] RL2

)
(8.61)

with the Serre line bundle O(a, b) is a test configuration for the product (X ×
X,La1 � Lb2). Restricting Z to the diagonal yields a test configuration Xa,b

for (X,La1⊗Lb2). The filtration associated to Xa,b is equal to the filtration(
F•⊗(a,b) G•

)
(RL1 ⊗RL2) so the two test configurations are Gm-equivariantly

isomorphic.
If we assume that Z is normal, the intersection theoretic formula for the

Donaldson-Futaki invariant [56, p. 225] implies that the Donaldson-Futaki
invariant is continuous in t.

The above argument generalises to weighted products of a finite collection
of algebras.

We give a very simple example of a family of test configurations on a fixed
polarised variety.

Example 8.53 (A combination of two simple test configurations on a ruled
surface). Let F and Q be very ample line bundles on a curve C of genus g and
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consider the projective bundle P(F ⊕Q) with its O(1)-polarisation. Let α and
β be the Gm-actions which scale F and Q, respectively, with positive weight
1. The two Gm-actions α and β determine filtrations

F ⊂ F ⊕Q (8.62)

and
Q ⊂ F ⊕Q (8.63)

and corresponding test configuration YF and YQ for (P(F ⊕ Q),O(1)). The
associated filtrations are discussed in more detail and generality in Section 8.6.

For any natural numbers a and b we define a test configuration of P(F ⊕Q)

by inducing a Gm-action on P
(
Sa+b(F ⊕Q)

)
and restricting to the image of

P(F ⊕ Q) under Veronese embedding of P(F ⊕ Q). The filtration associated
to this test configuration is generated by the grading on the vector bundle
Sa+b (F ⊕Q) given in Figure 8.1.

a+ b

S(a+b)F · · · SbF ⊗SaQ. . .S(a+b)Q

a+ 2b

2a+ b

Figure 8.1: The t-grading on the OP1-module Sa+b (F ⊕Q).

An elementary summation shows that the Donaldson-Futaki invariant of
the test configuration aτF + bτQ is given by

DF(aτF + bτQ) =
a3

(a+ b)3
DF(YF ) +

b3

(a+ b)3
DF(YQ)

+
a2b(µF + 1− g) + ab2(µG + 1− g))

2µ2
E(a+ b)3

.

(8.64)

For example, if µF = 2 and µQ = 1, we plot the Donaldson-Futaki invari-
ant for different values of a and b in Figure 8.2. The code for repeating the
calculation be found in [47, Ruled surface interpolations].
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DF(τF )
t = 1

DF(τQ)

y

y = DF((1− t)τF + tτQ)

Figure 8.2: The Donaldson-Futaki invariant of (1− t)τF + tτQ plotted against
t = b

a+b
when µF = 2, µQ = 1 and g = 2 equals 1

9
(−1+6t−3t2−t3).

8.4 Okounkov bodies and the convex transform
of a filtrations

In this section we describe the behaviour of the convex geometry associated to
the variation of filtered linear series coming from the convex structure defined
in Section 8.3. We give a brief review of Okounkov bodies and the convex
transform associated to an admissible filtration. For more details, we refer to
Lazarsfeld-Mustaţǎ [54], Boucksom-Chen [14], Witt-Nyström [89] and Széke-
lyhidi [85].

Let X be a smooth complex projective variety and L a line bundle on
X with ring of sections R =

⊕∞
k=0H

0(X,Lk). Fix a base point p ∈ X and
holomorphic coordinates z1, . . . , zn centred around p. Given f ∈ Rk we may
write

f = szr11 · · · zrnn , (8.65)

for some (r1, . . . , rn) ∈ Zn, where s is a holomorphic function on a neighbour-
hood of p which does not vanish at p. We keep the base point and the choice
of coordinates fixed throughout the section.

We define a function ν : R→ Qn by setting

ν(f) =
(r1, . . . , rn)

k
(8.66)

for any such f ∈ Rk.

Definition 8.54. Define the Okounkov body of L by ∆(L) = ν(R) ⊂ Rn.
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It is well known that ∆(L) is a convex set. Given an admissible filtration
F•R, we define

R≤t =
∞⊕
k=0

FbtkcRk. (8.67)

This determines a closed convex subset ∆(L)≤t = ν(R≤t).

Definition 8.55. Define the convex transform of F•R to be

G(x) = inf{t : x ∈ ∆(L)≤t}. (8.68)

If x is rational we have G(x) = inf
{

lev f
deg f

: ν(f) = x
}
. The extension to

real numbers is obtained as the pointwise largest function which is lower semi-
continuous and agrees with the restriction the subset ∆(L) ∩Qn.

Suppose now that L1 and L2 are ample line bundles on X. Let F i
•RLi

be admissible filtrations for i = 1, 2 and let Gi : ∆(L) → R be the convex
transforms of the two filtered algebras.

Let a and b be nonnegative integers such that there exists a surjective
homomorphism

ψ : S =
∞⊕
k=0

(RL1)ak⊗(RL2)bk −→
∞⊕
k=0

H0(X, (aL1 + bL2)k). (8.69)

for all k > 0. The ringRaL1+bL2 is naturally filtered by the image of (F 1
• ⊗(a,b) F

2
• )S.

The Okounkov body ∆(aL1+bL2) is contained in the Minkowski sum a∆(L1)+

b∆(L2).
Set

U =
{

(x, v) ∈ R2n :
x

2
+ v ∈ a∆(L1),

x

2
− v ∈ b∆(L2)

}
(8.70)

and define a real valued function Ĥ : U → R by setting

Ĥa,b(x, v) = aG1(
x+ 2v

2a
) + bG2(

x− 2v

2b
). (8.71)

Theorem 8.56. The convex transform Ga,b(x) of the weighted product filtra-
tion (F 1

• ⊗(a,b) F
2
• ) (RL1 ⊗RL2) is equal to the minimiser

Ha,b(x) = minv∈U Ĥa,b(x, v) (8.72)

restricted to the Okounkov body ∆(aL1 + bL2).
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Proof. LetGa,b(x) be the convex transform of the filtration (F•⊗(a,b) G•)(R⊗S).
We must show that Ha,b(x) = Ga,b(x) for x in

∆(aL1 + bL2) ⊂ a∆(L1) + b∆(L2) (8.73)

Let x ∈ ∆(aL1 + bL2) ∩ Qn and let νi and νa,b denote the convex transforms
of F i

• and F 1
• ⊗(a,b) F

2
• , respectively. We have

Ga,b(x) = inf

{
lev(f)

k
: f ∈ (RaL1+bL2)k and

νa,b(f)

k
= x

}
= inf

{
lev(g) + lev(h)

k
: g ∈ RakL1 , h ∈ RbkL2 and (ψ ◦ νa,b)(g⊗h) = x

}
≥ inf {aG1(ν1(g)) + bG2(ν2(h)) : g, h as above}
≥ Ha,b(x).

(8.74)

On the other hand, let ε > 0 and fix y and z such that

Ha,b(x) ≥ aG1(y) + bG2(z)− ε. (8.75)

There exists k > 0 such that we can find g ∈ (RL1)ak and h ∈ (RL2)bk such
that

ν1(g) = y, ν2(h) = z

lev(g)

ak
≤ G1(y) + ε, and

lev(h)

bk
≤ G2(z) + ε,

where νi : RLi → ∆(Li) are the two valuations. We have

Ga,b(x) ≤ (lev(g) + lev(h))/k

≤ aG1(y) + bG2(z) + (a+ b)ε by choice of g and h

≤ Ha,b(x) + (a+ b+ 1)ε by choice of y and z.

Letting ε tend to 0 yields

Ga,b(x) ≤ Ha,b(x). (8.76)

If x is irrational, the value of Ga,b(x) is obtained as the infimum

lim inf
δ→0

{Ga,b(x
′) : |x− x′| < δ} . (8.77)
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The same argument works in this case as well, bearing in mind that we may
approximate the value of Ga,b at x by Ga,b(x

′) arbitrarily closely since Ga,b(x)

is convex and bounded from below.

Remark 8.57. This result can easily be extended to convex combinations of
arbitrary finite collections of test degenerations of X.

Remark 8.58. It is convenient to work instead with the Q-line bundle aL1+bL2

a+b

and reparametrise the family of functions H(a,b)(x) as a function

Ht : ∆ ((1− t)L1 + tL2)→ R, (8.78)

where t ranges over the unit interval. We go a step further and identify the
range of Ht with a subset of

V (L1, L2) = Conv (∆(L1)× {0},∆(L2)× {1}) ⊂ Rn × [0, 1]. (8.79)

It would be interesting to know what kind of behaviour the function Ht

can exhibit on V (L1, L2). The variation of Okounkov bodies was studied by
Lazarsfeld-Mustaţǎ [54, Section 4].

If X is toric, Okounkov bodies are a particularly powerful tool. The follow-
ing examples use the theory of toric varieties. Briefly, the ring of sections of a
polarised toric variety (X∆, L) corresponding to a polytope ∆ = ∆(L) ⊂ Rn,
where Rn contains a fixed lattice Zn, is given by

R =
∞⊕
k=1

Zn

k
∩∆. (8.80)

Sections of H0(X,Lk) are identified with points

m/k = (m1/k, . . . ,mn/k) (8.81)

in the polytope ∆, where mi are integers. Multiplication of two sections x
and y under this identification corresponds to taking their Minkowski average
(x+ y)/2 in ∆.

Example 8.59 (Convex combinations of toric filtrations.). Let X be a toric
variety with two line bundles L1 and L2 with section rings R and S isomorphic
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to the sets of rational points in ∆(L1) and ∆(L2), respectively. Let G1 :

∆(L1) → R and G2 : ∆(L2) → R be lower semicontinuous convex functions
and define filtrations

F f
i Rk = spanC{x ∈ P/k : f(x) ≤ i}, (8.82)

and
F g
i Sk = spanC{β ∈ Q/k : g(β) ≤ i}. (8.83)

In this case the (a, b)-weighted Minkowski average

P =
a∆(L1) + b∆(L2)

a+ b
, (8.84)

is precisely the Okounkov body of aL1+bL2

a+b
in the appropriate sense for Q-line

bundles. The family of convex transforms

Ga,b : P → R (8.85)

now characterises the family of test degenerations determined by the weighted
product by Donaldson’s theory of toric test configurations [27]. Denote Gt =
Ga,b
a+b

, where t = b
a+b

. Studying the behaviour of Gt as t changes may be a
useful explicit way to study the variation of test configurations in the weighted
product.

Example 8.60. Consider two Gm-actions α and β on P1 = ProjC[x, y] such
that if (x/y) is a local coordinate, α scales (x/y) by weight c and β by −d.
The filtrations Fα

• and F β
• defined by α and β, respectively, have linear convex

transforms on the polytope P = Q = [0, 1]. Rational points in [0, 1] correspond
to monomials xpyq by the bijection

xpyq ↔ p/(p+ q). (8.86)

It is straightforward to check, either from the definitions or by Theorem 8.56,
that the convex transforms of Fα

• ,F β
• and [Fα

• ] + [F β
• ] are

fα(x) = 1 + cx,

fβ(x) = 1 + d(1− x)

fα⊗β(x) = max{1 + c(x− 1/2), 1− d(x− 1/2)},

(8.87)
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respectively. Geometrically, the corresponding degeneration splits P1 into two
copies of P1 of equal volume intersecting at a fixed point of the Gm-action.
The Gm-actions on the two components are given by scaling a local coordinate
by the integers c and −d, respectively.

Example 8.61. Keep to the notation of Example 8.60, except now let c =

−d = 1 and consider the (a, b)-diagonal product of filtrations

(Fα
• ⊗(a,b) F

β
• )(C[x, y]⊗C C[x, y]) (8.88)

for each pair of natural numbers (a, b). The total space of the toric family is,
for each pair (a, b), a degeneration of a rational curve into a pair of intersecting
curves of lower degree whose ratio of volumes is equal to t. As t approaches
0, the limiting convex function corresponds to the vector field β. This is also
the natural limiting object in Test(P1).

...

P

1/2

1/3
1/4

0

. . .

Figure 8.3: The convex functions corresponding to the product a[Fα
• ] + b[Gβ

• ]

in Test(P1) for different values of t, where we denote t = b/(a+ b).

8.5 Pullback test configurations

We fix a projective morphism p : Y → B and let L be an ample line bundle
on B. In Section 8.2 we defined test configurations which are fibred over B
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in a Gm-equivariant way. As a further application of the constructions of the
previous sections, we construct test configurations of Y which are naturally
fibred over a test configuration of B called pullback test configurations.

Let F•RL be an element of Test(B). After replacing L with a power if
necessary, we obtain an admissible filtration of RL, also denoted by F•RL.
Let L be a relatively ample line bundle on Y and define a map

Φ(a,b) : Test(B)→ TestB(Y ) (8.89)

by letting Φ(F•RL) be the the filtration

∞⊕
k=0

Aak⊗F•Lbk. (8.90)

Lemma 8.62. The map Φ preserves admissible filtrations.

Proof. This is a special case of Lemma 8.17.

Definition 8.63. We say that Φ(a,b)(F•RL) is the pullback of F•RL weight
(a, b).

Example 8.64 (Pullbacks of test configurations). Assume that F•RL is a
finitely generated admissible filtration and let B be the scheme ProjF•RL.
Considering the algebra ReesOB Φ(a,b)(F•RL) as a OB-algebra determines a
morphism

Y = ProjBReesOB Φ(a,b)(F•RL) (8.91)

such that the diagram
Y B

A1

commutes.

Definition 8.65. Define the line bundle

La,b = O(a)⊗ p∗Lb (8.92)
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on ProjB A. Alternatively, the line bundle La,b is the Serre line bundle on
Proj (A⊗OB RL)(a,b). We have already seen in Lemma 8.33 that given a lo-
cally finitely generated p-test degeneration G•A ∈ TestB(Y ), the relative test
configuration

Y = ProjB (A⊗OB RL)(a,b) (8.93)

is ample for d� 0. Denote the Serre line bundle on Y by L(a,b). In particular,
if a = 1 simply write L(a,b) = Lb.

We give two examples of a nice phenomenon which happens with pull-
back test configurations for adiabatic polarisations. The first example, due to
Stoppa [76], was already mentioned in Section 1.2.3.

Example 8.66. Let p : Y → B be a blow up of a zero dimensional subscheme
Z and B a test configuration for (B,L). Let Y be the pullback of B of
weight (1,m). Then the Donaldson-Futaki invariant of the test configuration
DF(Y ,Lm) is given by

DF(Y ,Lm) = DF(B)− Cm1−n +O(m−n), (8.94)

where n is the dimension of B and C is a positive constant.

Similar results were also proved for slope stability by Ross and Thomas
[68, Section 5.5], and later by Stoppa [80, Lemma 3.1].

The second example is due to Ross and Thomas [68, Section 5.4].

Example 8.67. Let p : Y → B be a projective bundle or a flag bundle and
B′ a subscheme of B. Let Y be a pullback test configuration with weight
(1,m) of the slope test configuration of IB′ ⊂ OB defined in Remark 8.34 with
slope parameter 1. Then the leading term in m ∈ N of the Donaldson-Futaki
invariant of the test configuration DF(Y ,Lm) is given by

DF(Y ,Lm) = DF(B) +O(m−1), (8.95)

where (B, L) is the test configuration determined by the pullback of B′.
Ross and Thomas presented the calculation in the case of a projective

bundle but the flag bundle case follows verbatim.
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Remark 8.68. In the following we have various spaces of sections endowed
with natural Gm-actions. For each vector space we wish to have a succinct
and obvious notation for the trace function defined on page 39. Given a vector
space V with a natural Gm-action, we write the trace function simply as trV .

Remark 8.69. A product of two cscK polarised varieties (X1, L1) and (X2, L2)

is cscK with respect to the product polarisation L1⊗L2. It is our hope that an
algebraic proof of the K-stability of the polarisation L1⊗L2 would be found.
The difficulty is having to consider test configurations which are not pullbacks
from either X1 or X2. We believe it should not be necessary to consider these
more complicated test configurations to decide whether (X1 ×X2, L1⊗L2) is
K-stable, in contrast with the example of an unstable product of two curves
in [67].

Remark 8.70 (Toric bundles). There is a simple type of relative test configu-
ration that has appeared in [3]. Let E be a principal GL(n,C)-bundle over B
and consider a torus bundle T in E with fibre (Gm)×e. Then one may define a
fibrewise orbit closure Y of T using the theory of toric varieties. The theory of
toric test configurations developed in [27] generalises to this context and yields
test configurations which intuitively degenerate fibres of the projection Y → B

in a uniform way. The authors of [3] proved partial results about the extremal
YTD correspondance for adiabatic polarisations on toric bundles constructed
in this way.

We think of the test configurations defined in [3], which preserve the ho-
motopy type of the associated principal bundle but degenerate the fibres of
p : Y → B, as complementary to the test configuration defined in Chapter
5. We studied test configurations which changes the homotopy type of the
associated principal GL(n,C)-bundle but preserves the fibres of p.

In light of the previous remarks, we conclude that particularly on adia-
batic polarisations of Y , there are two natural families of test configurations:
ample p-test configurations and pullback test configurations. A perhaps naive
conjecture we wish to make, motivated by known partial results on blowups,
projective bundles, rigid toric bundles blowups and now flag bundles, is that
these two test classes of test degenerations characterise the stability of adia-
batic polarisations in the following sense.
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Conjecture 2. Let p : Y → B be a projective morphism with (B,L) a polarised
variety and L(a,b) as in Definition 8.65. Then there exists an integer b0 > 0

such that the pair (Y,L(a,b)) is K-stable (K-polystable, K-semistable) for b > b0

if and only if it is K-stable with respect to test configurations in TestB(Y,L(a,b0))

and pullback test configurations under the projection p with weight (a, b0).

Remark 8.71 (Some remarks about Conjecture 2). The hypothesis that projec-
tive morphism should be enough to yield the statement may be overenthusiastic
as we have only studied very simple examples (flag bundles in Chapter 5 and
certain closed immersions in Chapter 7) in this work.

We also conjecture that the Conjecture 2 holds with admissible filtrations
and K-stability in place of test configurations and K-stability.

Finally, an example in Ross [67] shows that the statement of the conjecture
does not hold for arbitrary polarisations on Y .

8.6 Natural filtrations of shape algebras

Fix a coherent sheaf E with a subsheaf F on a scheme B, a partition λ with
jumps given by r. Then we define a filtration W•Sλ(E) which is generated by
F ⊂ E (cf. Definition 8.11 and Definition 8.18). The basic idea goes back
to Griffiths, who defined a natural filtration of an exterior power of a vector
bundle [38].

Example 8.72. The filtration of S(E) generated by F ⊂ E is given by

F ⊂ E ⊕ S2F ⊂ E ⊕ F · E ⊕ S3F
⊂ E ⊕ S2E ⊕ F · S2E ⊕ S4E ⊂ · · · .

(8.96)

Here we have used the notation F · E to mean tensors in S2E which are in the
image of the symmetrisation map F ⊗E → S2E. Note that the same filtration
can be obtained from the filtration IPF ⊂ OPE using Remark 8.34.

In general, the subsheaf F ⊂ E generates a filtration

W•Eλ = (W•Sλ(E))1, (8.97)
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which we write in terms of the factors of F and E in the tensor algebra T (E)

as
WiEλ = cλ

(
F⊗ i⊗E⊗(l−i))⊗C[Si]×C[Sl−i] C[Sl]. (8.98)

Here cλ is the Young symmetriser (cf. Definition 2.9) and C[Si] denotes the
group algebra of the symmetric group, which acts on T (E) by permuting the
tensor factors. In other words, the module WiEλ is generated by tensors with
at least i factors are contained in F . The filtration in Equation (8.98) is a
finite decreasing filtration and a simple change of indexing yields an increasing
filtration which generates an admissible filtration of the algebra Sλ(E). We
call this filtration the F-weight filtration of Sλ(E) and denote it by ŴF

• Sλ(E).
In contrast, we denote the filtration generated by the descending filtration of
Equation (8.98) of increasing powers of F by W•FSλ(E).

Remark 8.73. The test configuration determined by the subsheaf F ⊂ E for
flag bundles is not given by the theory of slope stability as it does in the case
of projective bundles Example 8.72, but by a more complicated filtration of
the structure sheaf OF lr(E) (Remark 8.27 and Remark 8.34). This filtration
is obtained from a flag of relative Schubert varieties determined by increasing
incidence conditions with the subsheaf F .

Example 8.74 (Computation of the weight function). Consider a direct sum
F ⊕Q of coherent sheaves on B. We write

Sλ(F ⊕Q)k = (F ⊕Q)kλ =
⊕

|ν|+|µ|=k|λ|

Mkλ
νµFν ⊗Qµ (8.99)

using the Littlewood-Richardson rule. We have

WiE
kλ =

⊕
|ν|≤i

Mkλ
νµFν ⊗Qµ. (8.100)

We define the corresponding weight function

w(k) =
∞∑
i=0

i (χ(WiSλ(F ⊕Q)k)− χ(Wi−1Sλ(F ⊕Q)k))

=
∞∑
i=0

i
⊕
|ν|=i

Mkλ
νµFν ⊗Qµ

(8.101)

This is the weight function which appeared in Lemma 5.11.
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Example 8.53 generalises to more general flag bundles, but the trick we
used in Chapter 5 does not compute the weight function any longer.

Example 8.75 (A product of two simple filtrations of a shape algebra). Let
E be a vector bundle isomorphic to a direct sum of subbundles F ⊕ Q. Let
A = Sλ(E) be a shape algebra for F l r(E) with a polarisation Lλ(A). Consider
the two filtrations W F

• A and WQ
• A. The filtration

F ⊗Q ⊂ F ⊗E ⊕Q⊗E = S2E (8.102)

generates the tensor product filtration (W F ⊗(1,1)W
Q)(A⊗OB A) of the (1, 1)-

diagonal of A⊗OB A via the projection

α : Sλ(S
2E)→ S2λ(E). (8.103)

The kernel of α is a complicated object which can be described by decomposing
the representation Sλ(S2E) into irreducible representations. The composition
of Schur functors is called plethysm [88, p. 63].
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Chapter 9

Further directions

We end by outlining three directions in which this work can be developed. Fix
a smooth scheme B over C and vector bundle E of rank rE on B.

9.1 Chern character formula

We hope to find a generalisation to the Chern character formula of Theorem
4.3. The proof we presented required the assumption that λ is proportional to
the canonical partition σrE ,r for some tuple r, but it is easy to verify compu-
tationally that this assumption is not required for the statement to be true in
many special cases. Perhaps it is possible to use Schubert calculus to reduce
inductively to the case solved in this thesis. The assumption on the partition
forced us to make a highly undesirable restriction in our choice of polarisation
for the flag bundle in our discussion of its K-stability in Chapter 5.

Decompose chEkλ as follows

chEλ = rankEkλ

b∑
i=1

Bi(E, kλ), (9.1)

where Bi(E, λ) has degree i in the Chow ring of B. Then expand Bi(E, kλ)

by decreasing degree in k as

Bi(E, λ) = Bi,0k
i +Bi,1k

i−1 + · · ·+Bi,ik
0, (9.2)

It seems that a general closed formula for the polynomials Bij(E, λ) in the ex-
pansion 9.2 should be attainable, generalising Manivel’s beautiful result stated
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in Theorem 4.9.

9.2 Flag bundles and projective bundles

Let (B,L) be a smooth polarised variety of dimension b and E is a vector
bundle on B.

If the underlying vector bundle has higher rank, K-stability of its flag bun-
dles depends on higher Chern classes, which were cancelled out by considering
adiabatic polarisations in Section 5.3. It would be interesting to know if such
dependence has a geometric interpretation. This would require generalising
Theorem 4.3 describing terms in Equation (9.2).

In the adiabatic case that it suffices to calculate Bi,0 and Bi,1. While this
is possible for fixed k and λ, it does not seem easy to generalise the arguments
of [60] or Chapter 4 to obtain the coefficients Bi,j. For general polarisations,
the knowledge of the term B3,1 would immediately allow the calculation of
Donaldson-Futaki invariants of any test configuration induced a subbundle
filtration F ⊂ E, and the base B has dimension 2. It may be possible to
extend the arguments of Chapter 4 to this case.

Classical flag varieties which are studied in this work are only one example
of a more general construction. Let G be a semisimple complex group. Then
quotients of G by subgroups containing the Borel subgroup of G are projective
varieties. We call such a variety a generalised flag manifold. They are classified
by subsets of nodes on Dynkin diagrams of the Dynkin diagram of the cor-
responding group G. From the point of view of Kähler geometry, generalised
flag manifolds have very similar properties to the classical ones.

A Borel-Weyl pushforward formula, similar to one stated in Section 2.6 for
classical flag bundles, also holds for the symplectic and orthogonal groups [88,
Chapter 4]. For example, if F is a vector bundle of even rank on the base B
and

〈·, ·〉 : F ×B F → C (9.3)

is a symplectic form. We define the isotropic flag variety IF lagr(E) of r-
flags of isotropic subspaces in F ∗. Subbundles of F can be used to define test
configurations of IF lagr(E). It would be interesting to know if the behaviour
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of the Donaldson-Futaki invariants is similar to that seen in Chapter 5.

9.3 Relative K-stability and operations on test
configurations

Ampleness of the relative test configurations was not discussed in this work.
This is a fundamental property which brings us back to the theory of K-
stability. An effective result is not known to us even in the flag bundle case.

We believe that explicitly computing Donaldson-Futaki invariants of fam-
ilies of test configurations in examples can be used to exhibit new interesting
behaviour of K-stability in the cone of polarisations. We hope this may help in
establishing a conjectural picture for the behaviour of K-stability in families of
polarised varieties where the polarisation L varies on a fixed underlying variety
X.

The calculations presented in this work could be generalised to give fur-
ther examples of K-unstable varieties. For example, the stability of higher
dimensional projective bundles is still wide open over a higher dimensional
base and Donaldson-Futaki invariants have only been computed for very sim-
ple test configurations. Finding an explicit formula for the Donaldson-Futaki
invariant similar to one found in Example 8.53 should be possible in higher
dimensions, particularly, if the vector bundle is a direct sum of two line bun-
dle. We believe that it should be possible to, for example, find a examples
of nonalgebraic obstructions on both rational and irrational polarisations this
way by using Remark 8.39.

Although we do not expect it to have applications to K-stability, describing
the convex geometry associated to convex transforms on moving Okounkov
bodies as the polarisation varies, discussed in Section 8.4, is an interesting on
its own right.
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Appendix A

Appendix

A.1 Combiproofs

We include the proofs of the combinatorial formulae for completeness.

Lemma A.1. Let k and n be integers and let p(k) =
(
k+n−1
n−1

)
. Then

∑
i

i2
(
n− 2 + k − i

n− 2

)
=

(n+ 2k − 1)(k + n− 1)!

(k − 1)!(n+ 1)!
= (2k2 + k(n− 1))p(k)

(A.1)
and ∑

i,j

ij

(
n− 3 + k − i− j

n− 3

)
=

(k + n− 1)!

(k − 2)!(n+ 1)!
= k(k + 1)p(k). (A.2)

Proof. We prove the first identity by induction on n and k. Let

f(k, n) =
∑
i

i2
(
n− 2 + k − i

n− 2

)
(A.3)

Using the identity (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, (A.4)
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which holds for all 0 ≤ k ≤ n− 1 we see that

f(k, n) =
k∑
i=1

i2
(
n− 2 + k − i

n− 2

)

= k2 +
k−1∑
i=1

i2
((

n− 3 + k − i
n− 3

)
+

(
n− 2 + (k − 1)− i

n− 2

))
= k2 + f(k, n− 1)− k2 + f(k − 1, n)

= f(k − 1, n) + f(k, n− 1).

(A.5)

Finally we verify that

(n+ 2k − 3)(k + n− 2)!

(k − 2)!(n+ 1)!
+

(n+ 2k − 2)(k + n− 2)!

(k − 1)!n!
=

(n+ 2k − 1)(k + n− 1)!

(k − 1)!(n+ 1)!
.

(A.6)
This completes the induction step. The base case follows from verifying the
cases f(k, 2) and f(1, n).

The proof of the second identity is almost identical. Let

g(k, n) =
k∑
i=1

k−i∑
j=1

ij

(
n− 3 + k − i− j

n− 3

)
. (A.7)

Again we have

g(k, n) =
k∑
i=1

i(k − i) +
k−1∑
i=1

k−i−1∑
j=1

ij

((
n− 4 + k − i− j

n− 4

)
+

(
n− 3 + k − 1− i− j

n− 3

))

=
k∑
i=1

i(k − i) + g(k, n− 1)−
k∑
i=1

i(k − i) + g(k − 1, n)

= g(k − 1, n) + g(k, n− 1).

(A.8)

Verify the right hand side as above by computing

(k + n− 2)!

(k − 3)!(n+ 1)!
+

(k + n− 2)!

(k − 2)!n!
=

(k + n− 1)!

(k − 2)!(n+ 1)!
. (A.9)

The base case follows from verifying the cases g(k, 2) and g(1, n).
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Remark A.2. Let µ be a partition. Higher degree terms of Chern characters of
symmetric bundles can be computed from a more general formula for f(k, n, µ),
where

f(k, n, λ) =
k∑

i1=1

k−i1∑
i2=1

· · ·
k−(i1+···+iu−1)∑

iu=1

ij11 · · · ijuu
(
n+ k − c1(λ)− u− 1

n− u− 1

)
,

(A.10)
where we denote c1(λ) = u.

A.2 An elementary proof of Arezzo-Della-Vedova’s
formula

For completeness, we present an elementary derivation of the formula for the
Futaki invariant of a complete intersection along the same lines as [7, Section
4].

Definition A.3. Let p(k) be a polynomial in k with coefficients in an arbitrary
ring and s a vector of u natural numbers (s1 . . . su). Define

ps(k) =p(k)− p(k − s1) + · · ·+ p(k − su) +
∑
i 6=j

p(k − si − sj)

+ · · ·+ (−1)qp(k − s1 − · · · − su)
(A.11)

Lemma A.4. Let

p(k) = a0k
n + a1k

n−1 +O(kn−2) (A.12)

be a polynomial of degree n with coefficients in an arbitrary ring and s =

(s1 . . . sq). Then ps(k) is a polynomial of degree n− q and if we write

ps(k) =
n−u∑
i=0

cik
n−u−i (A.13)

the first two coefficients are given by

c0 = C(s)a0 (A.14)
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and
c1 = C(s)

(
n− u
n

)(
a1 −

n
∑u

i=1 si
2

a0

)
, (A.15)

where

C(s) =

(
u∏
i=1

si

)
n!

(n− u)!
. (A.16)

Proof. The proof is an easy induction on u. If r = 1 the statement is easy to
verify. Let m ∈ N. We have

p(k)− p(k −m) = nma0k
n−1 +m

(
(n− 1)a1 −

(
n− 1

2

)
a0

)
kn−2

+O(kn−3)

(A.17)

as required. Assume that the statement holds for all u-tuples and let s =

(s1, . . . , su) and s′ = (s1, . . . , sr+1). Notice that

ps
′
(k) = ps(k)− ps(k − su+1). (A.18)

so by the inductive hypothesis we have

ps(k − su+1) = c0k
n−u + (c1 − (n− u)sr+1c0) kn−u−1

+

(
c2 − c1(n− u− 1)su+1 + c0

(
n− u

2

)
s2
u+1

)
kn−u−2

+O(kn−u−3),

(A.19)

where c0 and c1 are as in the statement of the Lemma. Finally, we verify that

(n− u)su+1r!

(
u∏
i=1

si

)(
n

u

)
a0 = (u+ 1)!

(
u+1∏
i=1

si

)(
n

u+ 1

)
a0 (A.20)

and

c1(n− u− 1)su+1 − c0

(
n− u

2

)
s2
u+1

= (u+ 1)!

(
u+1∏
i=1

si

)(
n− 1

u+ 1

)(
a1 −

n
∑u+1

i=1 si
2

a0

) (A.21)

as required.
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Proof of Proposition 7.5. We will use the Koszul resolution to compute the
Hilbert and trace polynomials. We have the exact sequence

0→ OY (k −
u∑
j=1

sj)→ · · · → ⊕ui=1OY (k − si)→ OY (k)→ OX(k)→ 0.

(A.22)

Thus the Hilbert polynomial of X is given by

h0(X,OX(k)) =
u∑
j=0

∑
|I|=j

(−1)jh0(Y,OY (k −
∑
l∈I

sl)) (A.23)

where the summation is over all subsets I of {1, . . . , r} of size j. We denote
the Hilbert polynomial of OY (1) by h0

Y (k) and expand it as

h0
Y (k) = a0k

n + a1k
n−1 +O(kn−2). (A.24)

The highest order terms of the Hilbert polynomial

h0(X,OX(k)) = c0k
n−u + c1k

n−u−1 +O(kn−u−2). (A.25)

of OX(k) are given by Lemma A.4. The trace of the Gm-action on X is com-
puted similarly. Let wY (k) and wX(k) be the weight polynomials of the Gm-
representations on H0(OY (k)) and H0(OX(k)), respectively, and write them
as

wY (k) = b0k
n+1 + b1k

n +O(kn−1) (A.26)

and
wX(k) = d0k

n−u+1 + d1k
n−u +O(kn−u−1). (A.27)

By keeping track of the Z-grading in the exact sequence in Equation (A.22),
we find

wX(k) =
m∑
j=0

∑
|I|=j

(−1)jwY (k − si1 − · · · − sij)

+
m∑
j=1

∑
|I|=j

(−1)j (s1 + · · ·+ sj)h
0(Y,O(k − si1 − · · · − sij)).

(A.28)

We rewrite this as

wX(k) = wsY (k)−
u∑
i=1

γsi
(
h0
Y

)sî (k − si) (A.29)
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where the hat notation means that the ith member of the tuple is omitted,
that is

ŝi = (s1, . . . , si−1, si+1, . . . su). (A.30)

Using Lemma A.4 on wsY (k) and (h0
Y )

sî (k − si), we see that

d0 =
(n+ 1)!

(n− u+ 1)!

(
u∏
i=1

si

)
b0 − γ

u∑
j=1

(
sj

n!

(n− u+ 1)!

∏u
i=1 si
sj

)
a0

= C(s)
n+ 1

n− u+ 1

(
b0 −

γu

n+ 1
a0

) (A.31)

and

d1 =
n!

(n− u)!

(
u∏
i=1

si

)(
b1 −

(n+ 1)
∑u

j=1 sj

2
b0

)

− γ
u∑
i=1

(si
(n− 1)!

(u− 1)!

∏r
j=1 sj

si

(
a1 −

n
∑u

l=1 sl − si
2

a0

)
+ γ

u∑
i=1

(n− u+ 1)s2
i

n!

(n− u+ 1)!

∏u
j=1 sj

si
a0

= C(s)

(
b1 − γ

u

n
a1 +

∑u
l=1 sl
2

((u+ 1)γa0 − (n+ 1)b0))

)
.

(A.32)

Denote µY = a1/a0, νY = b0/a0 and S =
∑u

i=1 si. Notice that

DF(Y ) =
b0a1

a2
0

− b1

a0

= µY νY −
b1

a0

. (A.33)

The Donaldson-Futaki invariant of X is therefore given by

DF(X ) =
d0c1

c2
0

− d1

c0

=
n+ 1

n− u+ 1

(
νY −

γu

n+ 1

)
n− u
n

(
µY −

nS

2

)
− b1

a0

+ γ
u

n
µY −

S

2
((u+ 1)γ − (n+ 1)νY ))

=
(n+ 1)(n− u)

(n− u+ 1)n

(
νY µY +

nuSγ

2(n+ 1)
− nSνY

2
− uγµY
n+ 1

)
− µY νY + DF(Y ) + γ

u

n
µY −

(u+ 1)Sγ

2
+

(n+ 1)SνY
2

= DF(Y ) +
νY − γ
n− u+ 1

(
(n+ 1)S

2
− uµY

n

)
.

(A.34)
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This completes the proof.
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