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Abstract

We generalise partial results about the Yau-Tian-Donaldson correspondence
on ruled manifolds to bundles whose fibre is a classical flag variety. This is
done using Chern class computations involving the combinatorics of Schur
functors. The strongest results are obtained when working over a Riemann
surface. Weaker partial results are obtained for adiabatic polarisations in the
general case.

We develop the notion of relative K-stability which embeds the idea of
working over a base variety into the theory of K-stability. We equip the set of
equivalence classes of test configuration with the structure of a convex space
fibred over the cone of rational polarisations. From this, we deduce the open-
ness of the K-unstable locus. We illustrate our new algebraic constructions

with several examples.
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Chapter 1

Introduction

1.1 Introduction

In this thesis we study a mysterious relationship between complex differential
geometry and algebraic geometry which has been established around the exis-
tence of a best possible Kéhler form on a projective complex manifold. Recall
that a Kéhler manifold is a pair (X,w) where X is a complex manifold and w
is a closed positive nondegenerate differential form of type (1,1). Kéhler man-
ifolds have a wealth of good properties which belies their simple definition. It
is natural to study the problem of finding a best possible Kéhler metric on X.

A wonderfully rich picture arises already for Riemann surfaces, which have
been studied both algebraically and analytically for more than a century. The
famous Uniformisation Theorem of Poincaré and Kobe states that a compact
Riemann surface can be written as a quotient of a model space, either the
hyperbolic disk, the flat complex plane or the round sphere. Alternatively, this
can be stated by saying that any compact Riemann surface can be endowed
with a metric, unique up to a constant, whose sectional curvature is constant.
On the algebraic side, the compactification of the moduli space of curves is,
of course, one of the major accomplishments of modern algebraic geometry.
The two points of view are connected, for example, in the definition of the
Weil-Petersson metric on the compact moduli space of algebraic curves.

A pair (X, L), where X is a variety defined over the complex numbers and

L is an ample line bundle, is called a polarised variety. We assume for now that



X is smooth. A canonical metric on the polarised variety (X, L) is a Kahler
form w which is a solution to some naturally defined differential equation, is
unique up to an automorphism of X and whose cohomology class is equal
to ¢1(L). Canonical metrics in this sense are one natural generalisation of the
Uniformisation Theorem to higher dimensions. Given the existence of constant
sectional curvature metrics on Riemann surfaces, it is tempting to conjecture
that canonical metrics should always exist. This turns out to be a subtle
question, which has inspired a wealth of new mathematics at the intersection
of complex and algebraic geometry.

The theory of K-stability connects the question of existence of canonical
metrics on higher dimensionals polarised varieties to algebraic geometry. K-
stability is a conjecturally equivalent condition to the existence of a canonical
metric on (X, L). We call this the Yau-Tian-Donaldson (YTD) correspon-
dence.

A key idea that originates from the work of Hilbert and Mumford is that
one can associate numerical invariants to degenerations of (X, L). Let m be a

natural number and consider a projective embedding
X CcP"=PH"(X,L™)) (1.1)

and an action of the multiplicative group G,, on P, which acts linearly on the
hyperplane bundle on P". Then the orbit of X under the G,,-action is a family
of copies of (X, L™) which can be compactified over the point t — 0 in G,,.
The resulting family 2", which has a special fibre (X, Ly) invariant under
the G,,-action, is called a test configuration. The precise definition is given in
Definition [3.1] The group G,, has a representation on the space of sections of
the line bundle Ly which determines an important numerical invariant called
the Donaldson-Futaki invariant.

With certain refinements which will be discussed in the text, we say that
(X, L) is K-stable if the Donaldson-Futaki invariant DF(.2"), which will be
defined by Equation , is positive for all test configurations 2". Otherwise,
we say (X, L) is K-unstable. Paraphrasing the earlier discussion, a negative
Donaldson-Futaki invariant is a conjectural obstruction to the existence of a
canonical metric.

Most of this work is dedicated to the study of Donaldson-Futaki invariants



in a simple example. We say that a variety Y is a flag bundle if it comes with a
Zariski-locally trivial projection p: Y — B to a projective variety B, such that
the fibres of p are isomorphic to a flag variety. This is a natural generalisation
of a geometrically ruled manifold which is the single most studied example in
the theory of K-stability. The only rival to this status are toric varieties. Flag
bundles retain many of the properties of geometrically ruled manifolds while
exhibiting new features which make them worthy of an extended discussion,
such as a larger Picard group and richer geometric structure. Flag bundles
also provide a working example to test a folklore conjecture that the stability
properties of the underlying vector bundle should determine the K-stability
of its associated projective manifolds. We give a partial affirmative answer to
this conjecture.

Preliminary material is presented in Chapters 2] and [3] The former recalls
basic notions of group actions on algebraic varieties and introduces the reader
to flag bundles in more detail. The latter is an introduction to the theory of
K-stability. Chapter [4] contains a technical result, which will be crucial in the
computation of Donaldson-Futaki invariants in Chapter [5| where we construct
destabilising test configurations for flag bundles. Chapter [6]is independent of
the rest of the text in which we describe a generalisation of the Uniformisation
Theorem to flag bundles whose underlying vector bundle is a polystable vector
bundle over a Riemann surface. We thus obtain partial results towards a YTD
correspondance on flag bundles. We give additional examples of K-unstable
varieties in Chapter[7], where we study the K-stability of complete intersections.

Chapter [§ is almost entirely independent of the rest of the work and will
discuss a general theme that arises from the particularly simple type of test
configuration that was used in previous chapters. Families of simple projective
varieties have been a rich source of examples in the past [3 [4 B2 [33] 50, 57,
68, [74, BT]. We define and attempt to justify the notion of relative K-stability.
Roughly speaking this term refers to dividing the set of test configurations for
(X, L) into collections of simpler test configurations, each of which linked to a
projective morphism X — B, where B is a projective variety.

We develop the theory of filtrations of sheaves with a view towards studying
relative K-stability. This generalises the work by Székelyhidi [85] and Witt-

Nystrom [89]. Certain constructions of new test configurations from old have



already appeared in the work of Ross and Thomas [68]. We contextualise them
using the language of filtrations and obtain new constructions, which we hope
will be helpful in exhibiting interesting new behaviour of K-stability in the
Kéhler cone. We focus particularly on a weighted tensor products on filtered
algebras, which allow us to endow the set of test configurations, up to some
natural identifications, with a convex structure which is naturally fibred over
the cone of polarisations. We show that Donaldson-Futaki invariants behave
well under this construction which, in particular, imples the openness of the

K-unstable locus.

1.2 Background

There are three natural higher dimensional analogues to constant sectional
curvature metrics in Kéhler geometry. A Kahler form w is extremal if the
complex gradient vector field of its scalar curvature is holomorphic. The form
w has constant scalar curvature (cscK) if this gradient vector field vanishes
identically. This coincides with the usual requirement that the scalar curvature

function is constant. The simplest case is to consider the equation
Ricw = Cw, (1.2)

where C' is a constant and Ricw is the Ricci form. These metrics are called
Kihler-FEinstein and they form an important special class of cscK metrics.
Uniqueness was proved in increasing generality by Bando and Mabuchi
[10], Chen [17], Donaldson [26], Mabuchi [58] and Berman and Berndtsson
[12], who showed that an extremal metric on an arbitrary Kéhler manifold

(X, w) is unique up to automorphisms.

1.2.1 Kahler-Einstein metrics and the history of the YTD

correspondence
The cohomology class of a Kéahler-Einstein metric is equal to a multiple first
Chern class ¢;(X) of X so Kéhler-Einstein metrics can only exist if the first

Chern class ¢;(X) has definite sign. This is a major topological restriction on
X. If ¢;(X) is trivial, the famous Calabi-Yau theorem [90] states that there is

10



a unique KE metric up to automorphism. In the case ¢;(X) < 0, Yau proved
that there is a unique KE metric up to scale and automorphisms of X.

The case ¢;(X) > 0 is more complicated. Matsushima showed that if the
automorphism group of X is not reductive, then X does not admit a Kéhler-
Einstein metric. Donaldson-Futaki [37] found another obstruction related to
certain pathological vector fields on X. Yau then posed the problem of relat-
ing the problem of existence of Kéhler-Einstein metrics to a stability notion
in algebraic geometry [91]. Ding and Tian proposed K-stability as a conjec-
tural solution to Yau’s problem [24] defined using an ingenious combination
of Futaki’s work with algebraic degenerations of X. Donaldson gave the fully
algebraic definition of K-stability [27], which is used in this work with minor
modifications.

The equivalence between the existence of a Kahler-Einstein metric and
K-stability was proved by Chen, Donaldson and Sun which settled one of the
most famous modern conjectures in geometry. The problem has inspired many
novel ideas, such as the algebraisation of Gromov-Hausdorff limits [30], which
is a technique of endowing a limiting object in Riemannian geometry under
certain hypotheses with the structure of an algebraic variety. The continuity
method for metrics with cone singularities is another new construction that
was crystallised in the work of Chen, Donaldson and Sun. These two key ideas

were beautifully embedded in the proof of the following theorem [29].

Theorem 1.1 ([18, 19,20, 11]). The pair (X, —Kx) is K-stable if and only if

X admits a Kahler-FEinstein metric.

1.2.2 The Yau-Tian-Donaldson conjecture for constant

scalar curvature Kahler metrics

Constant scalar curvature Kéhler metrics can be defined by the equation
Scal(w) = C, (1.3)

where Scal(w) is defined by the equation Scal(w)w” = dim X Ric(w) A w™™!
with n denoting the dimension of the manifold X, and C' is a constant. CscK

metrics on an arbitrary polarised manifold is the first natural generalisation
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of the Kéhler-Einstein YTD correspondence. We say that (X, L) is cscK if
X admits a metric in ¢ (L) which is cscK. Donaldson made the following

conjecture.

Conjecture 1 (The Yau-Tian-Donaldson conjecture [27]). Let (X, L) be a
polarised smooth complex variety. Then there is a constant scalar curvature
Kahler cscK metric in the class ¢1(L) if and only if (X, L) is K-polystable.

We refer to Definition [3.5] for the definition of K-polystability.

Remark 1.2. Li-Xu [56] gave an example which contradicted the YTD corre-
spondence as it was originally stated, which included certain pathological test
configurations. The solution offered by Li-Xu was to only consider normal test
configurations. We follow an alternative convention due to Stoppa [79], which
is to allow nonnormal test configurations whose normalisations are not trivial.
Székelyhidi used yet another convention by restricting to test configurations
with positive norm. The final point of view was proven to be equivalent with
the first two by Dervan [22]. The norm and triviality of a test configuration
are defined in Section [3.1]

1.2.3 K-stability of cscK manifolds

Donaldson proved an elegant formula which relates scalar curvature with Donaldson-

Futaki invariants explicitly.

Proposition 1.3 ([28|). Let (X, L,w) be a polarised Kdhler manifold with
21w = c1(L) and let " be a test configuration for (X, L). The following lower
bound holds for the Calabi functional

DF(2)

1] 14

| Seal(w) — Seal(@) |2 > —
for some positive constant ¢ independent of the test configuration 2 and the
Kdhler formw. Here Scal(w) is the scalar curvature of w, Scal(w) is its average,
the norm is taken with respect to integrating with the volume form induced by
w, and the quantity | 2| is called the norm of the test configuration Z .
In particular, if (X, L) is cscK, then it is K-semistable.
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Arezzo and Pacard constructed cscK metrics on blowups of points of cscK

manifolds assuming that the volume of the exceptional divisor is small.

Proposition 1.4 ([8]). Let (X, L) be a polarised cscK Kdhler manifold with
a discrete automorphism group and let Y be the blowup of a point on X with
p: Y — X being the projection. Then there exists a positive number €y such
that there is a constant scalar curvature metric on (Y,p*L—e€FE) for 0 < € < €.

Here E is the exceptional divisor on'Y .

Stoppa noticed that the Donaldson-Futaki invariant of a particular test
configuration % on (Y, L — eFE), using notation from Proposition is equal
to

DF(%) =DF(Z) — Ce ™™ + 0(e™), (1.5)

where DF (%) and DF(.2") are the Donaldson-Futaki invariants of %" and 2",
respectively, and C'is a positive constant. Stoppa then deduced one implication
of the YTD conjecture.

Proposition 1.5 ([77]). Let (X, L) be a polarised variety with a discrete au-
tomorphism group and assume (X, L) is cscK. Then (X, L) is K-stable.

Finally, Berman proved the K-polystability of an anticanonically polarised

Fano variety admitting a cscK metric [11].

1.2.4 Projective bundles

Producing cscK metrics remains the main method of finding examples of K-
stable varieties since the nonexistence of a test configuration with vanishing
or negative Donaldson-Futaki invariant is difficult to prove otherwise. No
general method for constructing cscK metrics is known either, but partial
results are known in special cases. We believe that eventually the locus of
K-stable polarisations in the Ké&hler cone of X should yield to an explicit
description, at least in interesting examples. Projective bundles, and slightly
more generally flag bundles, are the simplest nontrivial examples.

We consider the bundle PE over a smooth projective variety B whose fibres

are spaces of 1-dimensional quotients of a holomorphic vector bundle E. Let

13



O(1) denote the relative hyperplane bundle on PFE, fix a line bundle A on B

and assume that the line bundle
L(A) =0(d)®pA. (1.6)

is ample. Using the theory of slope stability and results of Narasimhan and
Sesadri, Ross and Thomas proved that the K-stability of a projective bundle
on a curve is very closely related to the K-stability of the base and the stability

of the underlying vector bundle.

Theorem 1.6 (|63, 68]). Assume that B is of complex dimension one. Then
E is Mumford (semi/poly)stable if (X,L(A)) is slope (semi/poly)stable. If
E is polystable, then (X,L(A)) admits a cscK metric. Conversely, if E is
strictly unstable, then (X, L(A)) does not admit a cscK metric, and if E is not
polystable, then (X, L(A)) is not K-polystable.

Without the assumption on the dimension of B, Ross and Thomas proved

the following theorem using a result of Hong [44],

Theorem 1.7 ([44, [68]). Assume that A is an ample line bundle on B. Then
E is slope stable if there exists an mq depending on B, A and E such that
(X, L(A™)) is K-stable for m > mqg. Conversely, if E is strictly unstable,
then (X, L(A)) does not admit a cscK metric, and if E is not polystable, then
(X, L(A)) is not K-polystable.

Lu and Seyyedali [57] generalised Donaldson’s perturbation method [26]
and constructed extremal metrics in adiabatic classes on projective bundles.
Similar techniques have been used by Seyyedali [74] and [50] to construct
balanced metrics in adiabatic classes on projective bundles. Balanced metrics
and asymptotic Chow stability have a pivotal role in the development of the
theory of K-stability which is eloquently described in [26]. As a general rule,
many of the difficult constructions in the theory of K-stability are usually
known for projective bundles because of their simplicity.

More explicit constructions are carried out on certain simpler projective
bundles by Székelyhidi [82] [84] and Apostolov, Calderbank, Gauduchon and
Tonnesen-Friedman [3, 4, 5]. Apostolov and Tgnnesen-Friedman show in par-

ticular that the YTD conjecture holds for geometrically ruled surfaces [6].
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An example of a P-bundle Y over a product of three high genus curves
with a fascinating property is constructed in [4]. The authors prove an analytic
obstruction to the existence of an extremal metric and then construct the same
obstruction using the theory of slope stability. A priori, slope stability yields
a family of test configurations parametrised by an interval in the rational
numbers, but this can be formally extended to an interval in the reals, where
the obstruction defined in [4] appears. It is widely conjectured that no algebraic

test configuration destabilises the projective bundle Y.

1.2.5 Generalisations of the YTD correspondence

Before stating our results, we briefly list various generalisations of Conjecture
[1] that have appeared in the literature. In its most general form, the Yau-Tian-
Donaldson correspondence can be understood to mean the following statement

about the existence of special metrics and stability.

There is a canonical metric (of specified type) in the class c1(L) if and only if
the projective variety (X, L) is K-stable (in the appropriate sense)

The correspondences that are known to us are summarised in the following
list.

(1) The existence of cscK metrics on a smooth polarised variety is equivalent
to K-stability [27]

(2) The existence of extremal metrics on smooth polarised varieties is equiva-

lent to K-stability relative to infinitesimal automorphisms — [82] [80)]

(3) The existence of Orbifold cscK metrics on polarised orbifolds is equivalent
to orbifold K-stability [70]

(4) The existence of cscK metrics with cone singularities along a divisor D
on a smooth polarised variety is equivalent to K-stability relative to the
divisor D [29]

(5) The existence of twisted cscK metrics on a smooth polarised variety is
equivalent to twisted K-stability |32} 78], 22]

15



1.3 Notation and conventions

Notation

e X Y, B, C are schemes, dim¢c C' =1

e £, F,G are coherent sheaves.

e &* is the dual sheaf of £.

e F. F, (@) are vector bundles.

e rp is the rank of the vector bundle FE.

e L .L ¥ and A are line bundles.

o A B are graded sheaves of Og-algebras which are generated at degree 1.
e F, (G, and H, are filtrations of a vector space or a sheaf.

e G,, is the multiplicative group Spec Cls, s™!], often denoted as C*.
e Al is the complex affine line Spec C[z].

e P" is the complex projective space Proj Clzy, . .., x,].

e Projg A is the relative proj of A.

e PF is the scheme Proj @,-, S*F.

e )\, u, v are partitions of positive integers |A|, || and |v|, respectively, page
27

e 1 is a finite strictly increasing sequence of natural numbers whose largest

entry is smaller than a fixed integer rg, page [29]
e S\(€) is the ring P,-, £, page
e S(&) is the ring @, EW), page
e Fl,(E) is the flag bundle of r-quotients of E, page [35]

® 0,,, is the canonical partition corresponding to the integer rz and the
tuple r, [47]

e B;(E,\) are Chern classes appearing in the expression for the Chern
character of the bundle E*, page .

16



e A;(E,\) are special cases of B;(E, \) for A = (k) for some natural number
k, [49]

e Test(X, L) is the set of test configurations on a polarised scheme (X, L)
M40l

e D, ,, is the leading coefficient of the Hilbert polynomial of a polarised
flag variety corresponding to the integer rx and the partition A, 52

° Nlj\7 ., are Littlewood-Richardson coefficients, page .

o Uy paxand Dg ) 1 5 are positive coefficients appearing in the expressions
for the Donaldson-Futaki invariant of a flag bundle, pages [65 and [66]

e F,,G, and H, are filtrations, pages [44] and

e FAlg, is the category of admissibly filtered sheaves of algebras, .

Conventions and terminology

e A polarised variety is a pair (X, L), where X is a complex variety and L

an ample line bundle on X.
e A vector bundle is identified with its locally free sheaf of sections

e We use the common abbreviation m > 0, which means that there exists

an myg such that a statement holds for all m > my
e Given a sheaf F on B, the fibre F ® k(x) is written as F,.

e Given a family 2~ — A!, we denote the fibres over closed points of Al
by 2, where t € A! and call the fibre 2; the central fibre

o Let h: Z — Q be a function, whose restriction to Z~y, for some positive
number kq agrees with a polynomial. If we only care about the asymp-
totics of h(k) as k tends to infinity, we will replace the function, by its
polynomial and abuse notation by using the same symbol. So a Hilbert
function becomes a Hilbert polynomial, a weight function becomes a

weight polynomial and so on.
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1.4 Statements of selected results

Fix a smooth projective variety B of dimension b with an ample line bundle
L. Let E be an algebraic vector bundle of rank rg over B, r a strictly in-
creasing finite sequence of positive numbers and Fi,.(E) the bundle of r-flags
of subspaces in E*. Fix a partition A = (\y,...,\;) with jumps given by r.
Let E* denote the vector bundle obtained from E and the representation of
GL(rg,C) given by A and let p be the projection from Fi,.(F) to B and define
the line bundle

Ly(A) =L, ®p A, (1.7)
on FI,.(E), where A is a line bundle on B and L, is the line bundle associated
to the partition A (cf. Equation (2.43)). We refer to Sections [2.4] and
for details.

We will often make the following assumption on our choice of partition.

Definition 1.8. We say that A and r satisfy the assumption ¢ if at least one
of the following holds:

(i) the length I[(A) of A is at most 4 (cf. page

(ii) A = to,,, for some positive rational number ¢, where o, , is the canonical
partition defined in Section [4.]]

Theorem A (Theorem , Section . Let C' be a smooth projective curve
of genus g, E an ample vector bundle of rank rg on C' and A an ample line
bundle on C.

e If E is slope polystable, then any polarised flag bundle (Fl.(E), Li(A))
admits a cscK metric. In particular (Fl.(E), LA(A)) is K-semistable.

o If )\ satisfies the assumption ¢ and E is slope unstable, then the flag
variety Fl.(E) of r-flags of quotients in E with the polarisation L£(A)
is K-unstable. If E is properly semistable, then the pair (Fl.(E), LA(A))

15 properly K-semistable.

o Finally, if E is simple, meaning that it has no nontrivial holomorphic
automorphisms, and g > 1, the YTD correspondence holds for any po-
larisation Ly(A) where X satisfies the assumption o. In particular, E is
simple if it is stable.

18



Theorem B (Theorem , Section. Let E, B and L be as in the beginning
of the section. Assume thatr and \ satisfy o and that E is slope unstable. Then
there exists an mq such that the flag variety Fl.(E) of r-flags of quotients in
E with the polarisation L5(L™) is K-unstable for m > my.

For i between 1 and b, define the cohomology class B;(E, A) to be the Chow

degree ¢ term in the expansion
ch B* = rank EX(1 + B1(E, \) + Bo(E,\) + -+ + By(E, \)) (1.8)
of the Chern character of E*.

Theorem C (Theorem , Section . Let E be as in the beginning of the

section and let \ satisfy the assumption ¢ for some rg and r, then

Cl()\)

Bi(E,\) = c1(E) (1.9)

and

ha(MNho(E)  ca(N)ca(F)
re(re+1)  re(rg—1)

Bo(E,\) = + H\Ay(E) + Z. (1.10)

where Z is independent of \, and h;(\) and c¢;(\) denote the complete symmet-

ric and elementary symmetric polynomials of \, respectively. We denoted

Ay() = e ( ho(E) e2(E) ) L1

2 TE(TE+1)_TE<TE—1)

and
rEcl()\) — ZZ(QZ — 1))\1

H, =
A TE—l

(1.12)

The notation =, means the following weak numerical equivalence: If U and V
are k-cycles in B, then U =, V if c;(A)"*.(U — V) is the zero cycle for all
line bundles A € Pic B. We also used ¢;(\) and h;(\) to denote the elementary

and complete symmetric polynomauals of degree i for \.

Theorem D (Theorem , Chapter . Given any positive integers p and d,
there exist a K-unstable hypersurface of degree d in a Grassmannian bundle of

p-planes in a vector bundle on a smooth complex curve.
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In Chapter |8 we define the notion of relative K-stability and generalise a
correspondence between filtrations and test configuration to this context [85].
Let p: Y — B be a projective morphism and £ a relatively ample line bundle
on Y. The definitions and the precise statements of the following two theorems
is found in Chapter 8]

Theorem E (Theorem [8.26] Section [8.2). There is a 1-1 correspondence be-
tween p-relative test configurations up to a natural identification and admissible
finitely generated filtrations of the algebra @, p.LE.

Theorem F (Theorem 7 Section . Without fixing a relatively ample
line bundle, set of p-test configurations for'Y is, up to natural identifications,
has a convex structure which fibres naturally over the cone of relatively ample
polarisations. Moreover, the Donaldson-Futaki invariant is continuous in the

variation of the convexr combination.
Remark 1.9. The statements of Theorem E and Theorem F specialise to usual
test configurations if we take B to be a point.

Theorem E and Theorem F immediately imply the following result, which

we also believe to be new.

Theorem G (Theorem [8.38)). Let X be a projective variety over the complex
numbers. Then the locus of line bundles which are K-unstable is open in the

cone of ample Q-line bundles with respect to the Euclidean topology.
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Chapter 2
Preliminaries

This chapter reviews preliminary material. We briefly review background on
geometric invariant theory in Sections[2.1]and Sections[2.2] Sections[2.3|recalls
the definition of Mumford stability of vector bundles and the Narasimhan-
Seshadri extension of the Uniformisation Theorem to vector bundles. Sec-
tions [2.4] Sections [2.5 and Sections review preliminaries on flag varieties

and their relative counterpart, flag bundles.

2.1 Group actions and linearisations

In this section we recall basic notions of group actions on complex projective
varieties [46], Section 4.2]. In particular, we briefly describe the equivariant set-
up for flag bundles and families of projective varieties over A!, which we will
use in later sections. Let X be a complex projective scheme with a G-action,
that is a regular map

p: X xG—=X (2.1)

The scheme X together with the action p is called a G-scheme. This notion also
extends to sheaves on X. Let F be a coherent sheaf on X. A G-linearisation of

F is an isomorphism of Ox yg-sheaves ® : p*F — pjF satisfying the condition
(idx xpu)*® = piy®o (0 x idg)* P, (2.2)

where p;s denotes the projection p15 : X X G x G — X x GG onto the first two

factors. A G-linearisation on F' induces an action on the schemes functorially

21



constructed from F. A G-linearised sheaf is often referred to simply as a G-
sheaf. If we assume that F is locally free and denote the total space of F by
F', linearisations are equivalent to GG-actions on F' whose projections F — X

are equivariant and restrict to linear isomorphisms
Fp = Fyey) (2.3)

for all (z,9) € X x G. A polarised G-variety (X, L) is a G-variety X with an
ample line bundle with a G-linearisation.
The most important actions in the theory of K-stability are ones by the

complex multiplicative group G,,.

Example 2.1 (Actions of the multiplicative group on polarised varieties).
Consider an action of the multiplicative group G,, over C on a projective
variety (X, L), where L is a very ample line bundle. Let R be the ring
H(X, @, L"). Then the G,,-linearisation on the line bundle L determines
a representation of the group G,, on the vector space H(X, L¥) for all k > 0

by setting
s.f(x) = f(s'x) (2.4)
for all s € G,,, x € X and f € H°(X, L¥). This determines a homomorphism
h: R — R]s] (2.5)

by sending
fresvf (2.6)

for any f which lies the space of weight —w(f) elements of the representa-
tion. If we extend this map linearly, it follows from Equation that the
homomorphism h preserves the grading on R. Conversely, any G,,-action on a
very amply polarised complex scheme arises from a homomorphism R — R[s],
where R is a graded algebra.

Another way to describe the map h is by lifting the G,,,-action to an action
on the affine cone [62]

Spec R x G,,, — Spec R, (2.7)
which by definition corresponds uniquely to a homomorphism

R — R[s,s']. (2.8)
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Lemma 2.2. Given a G-sheaf F, the Schur powers and shape algebras of
the sheaf are G-sheaves. Moreover, if A is a sheaf of Ox-algebras with a G-
linearisation which respects the algebra structure, the relative Spec construction
yields a G-scheme Y such that the natural morphism Y — X is G-invariant.
If A is graded, the same statement is true for the relative Proj where the

O(1)-line bundle comes with a natural linearisation of the action.

Proof. The Schur power part of the statement follows as tensor algebras of
linearised sheaves have natural induced linearisations. We refer to [46, pp. 94-

95] for the remaining statements whose proofs are straightforward verifications.

]

2.2 Geometric invariant theory

We review aspects of Mumford’s geometric invariant theory (GIT). The books
[62] and [6I] have been an invaluable reference, and contain the germs of many
ideas contained in this work and in the theory K-stability at large.

The idea of stability appears when one attempts to form quotients in the
category of quasi-projective varieties. Mumford realised that given an action of
an algebraic group G on a polarised variety (X, L), there is a G-invariant open
subset X of stable locus such that the orbit set X;/G can be given a natural
structure of a quasiprojective variety. Moreover, the Zariski closure of X;/G
can be naturally identified with a quotient of a larger set X, of semistable
locus by G. This construction is called the GIT quotient of X by G and it
depends on a choice of G-linearisation on the line bundle L.

We begin with the definition of stability for linear representations. Suppose
G is a complex algebraic group with a linear representation V. We say that a

point p € V' is
e stable if 0 ¢ G.p and Stabg(p) is finite,
e semistable if 0 & G.p and

e unstable if 0 € G.p.

For any x € PV, we say that z is stable, semistable or unstable if some (and

hence each) nonzero lift of = to V is.
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There is an induced action of G on the vector spaces H°(X, L*) for all
k € N given by
(9-5)(p) = s(9”"'p) (2.9)
for s € H°(X, L*) and p € X.

Definition 2.3. Let = be a point in a scheme X with an ample line bundle L.

e 1 is stable (with respect to a chosen linearisation) if there is an invariant
section s € H(X, L*) for some k € N such that the open set U, = {z :
s(x) # 0} is affine and invariant, and the orbits of closed points in Uy

are closed.

e 7 is polystable if there is an invariant section s € HY(X, L¥) for some
k € N such that the open set Us = {x : s(z) # 0} is affine and invariant,

and the orbits of closed points in U, are closed in the semistable locus,

e 1 is semi-stable if there is an invariant section s € H°(X, L*) for some
k € N such that the open set Us = {x : s(z) # 0} is affine and invariant

and

e 2 is unstable otherwise.

One parameter subgroups and the Hilbert-Mumford criterion Mum-
ford discovered a powerful criterion for determining whether a point is stable
in the sense of Definition . A one parameter subgroup (1-PS) of a complex
algebraic group G is a homomorphism x : G,, — G. Assume that G acts on
X and that p: X x G — X is proper. Given a point x € X, one parameter

subgroup x determines a morphism
f:A' > X (2.10)

which maps x to a point in the closure of the orbit of x. Then the induced
Gyy-linearisation of the action p oy on L restricts to a character of G,, on the
complex line f*L| [0y Let X(t) = t" be this character and define the integer

pr(z,x) = —r. (2.11)
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Proposition 2.4 (The Hilbert-Mumford criterion). Let X, L,G and p be as

above and x a point in X. Then
e 1 is stable if and only if u*(x,x) > 0 for all 1-PS .
e x is semistable if and only if u*(z,x) > 0 for all 1-PS x
e x is unstable otherwise.

Remark 2.5 (Stability of varieties). The Hilbert scheme and the Chow scheme
are two constructions, which are powerful tools in the study of families of pro-
jective varieties. They enable us to identify a projective scheme (X, L) with a
fixed embedding P(H°(X, L")*) as a point in a parameter scheme. The choice
of basis on P(H°(X, L")*) implies a natural GIT problem for Hilbert and Chow
stability, whose solution ultimately depends on understanding the Hilbert-
Mumford criterion on certain Grassmannians into which both the Hilbert
scheme and the Chow scheme are embedded.

The stability of (X, L), in either the Hilbert scheme or the Chow scheme,
depends on the parameter . Mumford suggested study of asymptotic stability,
or whether there exists an 7y such that (X, L) is stable for r > r5. Mabuchi
proved the equivalence of asymptotic Hilbert stability and asymptotic Chow
stability in [59]. K-stability, which will be defined in Chapter [3| is a mi-
nor modification on the Hilbert-Mumford criterion for asymptotic stability of
(X, L).

2.3 Stability of vector bundles

Let &£ be a coherent sheaf of rank rg on a smooth projective variety B. Define

the determinant of £ by

det€ = (/\ &)™ (2.12)
The define first Chern class by ci(det &), and the degree and the slope of £ by
deg € — / e (E).er (D). (2.13)
b's
and
pp = deg &/ rank &, (2.14)
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respectively. If £ is locally free in a subset U C B whose complement is con-
tained in a codimension 2 subscheme, we say that &£ is locally free in codimen-

sion 2. In this case the first Chern class of £ can defined to be the pushforward

a1 (&) = (iv)r(€|,), (2.15)

where
i:U— B (2.16)

is the inclusion.
Let TF(E) denote the set of torsion free subsheaves F of & with 0 <
rank F < rank & [51].

Definition 2.6 (Mumford-Takemoto slope stability [46, Definition 1.2.12]).
Let E be a vector bundle. We say that F is

e slope stable if pr < pp for all F € TF(E)

e slope polystable if pr < g for all F € TF(E) and in the case of equality,
E is a direct sum F @ Q with ur = po,

e slope semistable if pr < pg for all F € TF(E) and
e slope unstable otherwise.
A torsion free subsheaf F with pur > g is called a destabilising subsheaf.

The following generalisation of the Uniformisation theorem holds for polystable

vector bundles on Riemann surfaces.

Proposition 2.7 (|51, Theorem 2.7]). A vector bundle E of rank rg on a
Riemann surface X is slope polystable if and only if it admits a projectively
flat structure, that is the associated PGL(C, rank E)-bundle E is flat, meaning

that it arises from a representation
p:m(¥) = PGL(rg, C) (2.17)
of the fundamental group m (%) of X as the quotient

E =3 x, PGL(rg, C). (2.18)
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Remark 2.8 (The Hitchin-Kobayashi correspondence). If E is a vector bundle
and h is a Hermitian metric with curvature Fj,, we say that h is Hermitian-

Einstein if it satisfies
V—=1A,F), = ppidg, (2.19)

where A, is the dual of the Lefschetz operator [45, pp. 114-115].

The YTD correspondence is closely related to a result which relates the
existence special connections on vector bundles to Mumford stability. This is
called the Hitchin-Kobayashi correspondence proved by Narasimhan-Seshadri
[63], Donaldson [25] and Uhlenbeck-Yau [87]. It states that a Hermitian vector
bundle E on a projective manifold (M, L) admits a Hermitian-Einstein metric

if and only if it is Mumford stable.

2.4 Schur functors

We define Schur functors using the classical formulation in terms of Young
symmetrisers. Let A be a finitely generated QQ-algebra and M is a finite A-
module of dimension dj;.

A partition X = (A1,..., ;) is a finite nonincreasing sequence of natural
numbers. Define the length [(A) = [ and the area |\| = Zlizl A; of A\, Also
define the natural operations on partitions. Let A and p be partitions of equal

length and let & and n be a natural numbers. Define
e the componentwise sum \ + i,
e the componentwise product Ay,

e the sum and product with a natural number, understood to be a constant
partition of the correct length, and
e repeated indices (k™) := (k, ..., k).
——

n

A partition A is uniquely represented by a Young diagram D, consisting of
A; boxes in the ith row. Define the conjugate partition of A to be the partition
N represented by the Young diagram obtained from D), via reflection in the

diagonal axis of reflection starting from the top left corner. In other words,
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the difference between D, and D, is that the roles of rows and columns are

reversed.

L — L]

Example of conjugating the partition A\ = (4,2,1) by a reflection of its Young

diagram.

Definition 2.9. Let A be a ring containing Q, let A be a partition such that
d = |\ and denote I = (iy,...,iq). Consider the dth tensor power of M and

let m;,, ..., m;, be elements of M. Denote m; =m;;, ® --- ® mi,, and define
map
1
Cy:my > @ ;(sgm')maw(]), (2.20)

called the Young symmetriser. The rational number dy is chosen so that c
is idempotent. This requirement fixes d, uniquely. Explicitly, we have d) =
dys!/ dim M2
The summation is taken over all o (7, respectively) which preserve the rows
(columns) of the diagram. Define the Schur power M* of M associated to the
partition A by
M = ¢, (M®PW). (2.21)

Remark 2.10. The proof that the rational number d) exists can be found in
[36, Theorem 4.3].

Lemma 2.11. The Schur power construction is a functor from the category
of A-modules to itself and it commutes with change of base. We use the term

Schur functor synonymously with the term Schur power.

Proof. Let M and N be A-modules and let f: M — N be a homomorphism.

Then the natural homomorphism f* defined as restriction of
my - @mgr f(m) @+ ® f(my) (2.22)
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is well defined as a map M* — N*. It is clear that this construction respects
identity and composition.
Tensor powers commute with base change so the same is true for Schur

powers. ]

In particular, Schur powers are therefore defined on the category of coherent

sheaves on schemes.

Definition 2.12. Given a quasicoherent sheaf F and a partition A\, we define
the Schur power F* to be the quasicoherent sheaf locally obtained by Definition
2.9

To be more explicit, let {U,} an open affine cover of B such that F | U,
is the quasicoherent sheaf corresponding to a Op(U,)-module. We define F?,
|- The
transition maps are induced by localisation and functoriality. Denote the Schur
power of F by F.

the Schur power of F for the partition A, by its restrictions to F*

Definition 2.13. If r is a finite increasing sequence of natural numbers and A
is a partition, we say that the jumps of A are given by r if \; > \; 1 precisely
at indices ¢ belonging to r with the additional requirement that A, is zero for
some integer rg. Later, the integer rg will be taken to be the dimension of a
fixed vector space or the rank rg of a fixed vector bundle E. Denote the set

of such partitions by P(r).

The following algebra is at the centre of a relationship between geometry,

algebra and representation theory that we make use of in later chapters.

Definition 2.14 (Algebra structure [86]). Given an A-module M we define

the universal shape algebra
s(M) = m* (2.23)
A

where the summation is over all partitions A and the ring structure is defined
by the projection

my®my, — d;}r“c,\w(m)\@mu). (2.24)

for any my € M* and m,, € M*.
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We also define two natural subalgebras of S(M). Given any partition A,
we define the Z-graded subalgebra

S\M)=PM* =AM oM - (2.25)
k=0

called the shape algebra of M for the partition A. In the case A = (k) we
simply write

Sy (M) = S(M) (2.26)

for the symmetric algebra of M. Given a finite strictly increasing sequence of

natural numbers r, we define the Z°-graded subalgebra
S (M) = P M” (2.27)
veP(r)

called the total coordinate ring of the scheme of r-flags in M.
The terminology is justified in Section [2.5] and Section

Proposition 2.15. The algebras S(M), Sx\(M) and S,(M) are associative
and commutative A-algebras. The algebra Sx(M) is finitely generated as an
A-algebra.

Proof. Associativity and commutativity follow directly from the properties of
the Young symmetriser. Finite generation is clear since Sy (M) is generated in

degree one. O

Example 2.16 (Examples of Schur functors in the category of coherent sheaves).
Let £ be a coherent sheaf on an integral scheme B. Define the rank e = rank &€
of £ to be the dimension of the fibre of £ over the generic point of B [43] p.
74]. We define the determinant of £ by

det & = €1, (2.28)
which we also denote by A°E, and the symmetric power of € by
Ske =g, (2.29)

Remark 2.17 (Schur functors for vector bundles). If F is a locally free sheaf,

then there is a convenient description of the Schur power. Let E be the frame
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bundle of the vector bundle corresponding to E with fibre GL(V'), where V' is
a dimension rank £ complex vector space. Then we may define E* to be the

sheaf of sections of the vector bundle
E xq V> (2.30)
Remark 2.18. Either from Remark 2.17 or from the definition of a Schur func-

tor, we see that E* @ LY = (E® L)*, where ¢;()) is the sum 1, \;.

The following proposition will be important for applying the standard con-

structions of algebraic geometry to shape algebras.

Proposition 2.19 (Positivity of Schur powers [41]). If the vector bundle E is

ample, then the Schur power E* is ample for any partition \.

2.5 Flag varieties

In this section we present a short introduction to classical flag varieties and
the Borel-Weil theorem for the general linear group, which relates the space of
sections of an equivariant line bundle on a flag variety to a representation of
the general linear group. Our main reference is Weyman’s book, but we use a
dual convention for partitions [88, Chapters 2 and 3].

Given a vector (7, ..., 1.) of strictly increasing integers, we define an r-flag

of quotients of a vector space V' to be a sequence
VoV.aVegi—-- =V =0 (2.31)

of successive quotients where dim V; = r; which we assume not to be injective

for all 4. Dually, this corresponds to a sequence
ocvic---CcV;cVvs (2.32)

of nested subspaces. We make the assumption that the largest element of r is

smaller than dim V from now on without further mention.
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Let G = GL(e, C) and consider the subgroup of matrices of the form

By ox % ... *
0 By *x --- *
: S : ; (2.33)
0 0 0 B, =«
0 0 0 0 B.
where B; is in GL(r; — r;_1,C) and the entries marked with % are arbitrary.

Matrices of this form is the isotropy subgroup P, C G of a flag of coordinate

subspaces
0={(e1,...,€r) C{€1,...,€p) C---C(e1,...,e,) CC" (2.34)

Let V be a vector space of dimension rg and r a properly increasing se-
quence of positive integers. A classical flag variety Fl.(V) is the set of all

possible nested subspaces

o=V,cv,c---cV,, cV,, , =V" (2.35)

Tet1

where dim V., = r; for all j. The set of flags of this type has the structure
of a homogeneous space G/ P, where P, is the stabiliser of the flag in Equa-
tion ([2.34)).

Remark 2.20. There is a 1-1 correspondence between quotients and subspaces

of the complementary dimension. Dualising V' in Equation (2.35]) corresponds

to working with quotients of V' instead of subspaces.

The Pliicker embedding, which sends each plane spanned by vectors vy, ..., v, €
V* to the point [v; A --- A vy, ] € P(A"7V), determines an embedding from the
flag variety Fi,.(V') to the product of projective spaces

P =PA"V) x --- x P(A™V). (2.36)

The image is cut out by incidence relations determined by Equation ([2.35)
and quadratic relations on each of the factors P(A"7V'). The coordinate ring

of Fl,.(V) can be beautifully written in terms of Schur functors as follows.
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Proposition 2.21 ([88, Proposition 3.1.9]). Equip the coordinate ring of P
with its standard N°-grading. Then the (s1,...,S.)-component of the multi-
graded coordinate ring C[F1,.(V)] is isomorphic to the Schur module V*, where
the conjugate of \ satisfies

No=(r, ... rh). (2.37)

c

Another way to write this proposition is by using the Borel-Weil theorem,
which we state in the case of an ample line bundle on a flag variety of the
general linear group. Let A be a partition of length [ < e. Then we can define
a subgroup P, of G by letting r be the set of indices ¢ such that \; < A\;41.
Define the line bundle £, by

Ly = p10p@arivy(s1) @ -+ @ prOparev (Se), (2.38)

where the s; are determined by the requirement X = (r7',..., 7). Then the
classical Borel-Weil theorem |72 Théoréme 4.|, [I3, Proposition 10.2| implies
that

HO(F1,(V),Ly) =V (2.39)

for s; > 0.

Remark 2.22. A basic fact is that the tensor product of two line bundles £,
and £, indexed by partitions is given by

Ly® Ly, = Lrsp (2.40)

Note that only globally generated line bundles can be written using partitions.

Formally, it is common to denote the dual of a line bundle £, by £_, (cf. the
proof of Proposition [7.4)).

2.6 Flag bundles and the Borel-Weil Theorem

Let B be a projective scheme and let E be a vector bundle of rank rz on B.

Definition 2.23. Let G be a group. A (Zariski locally trivial) principal G-
bundle over B is a morphism p: Y — B such that

e Y is equipped with a G-action under which p an invariant map, and
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e there exists a Zariski open cover {U;};cr with an isomorphism ¢;p~'U; =
G x U; for all ¢ € I such that G acts by left translation on itself and
trivially on Uj.

Let E be the frame bundle of E' constructed as follows. Let Uy,...,Uy be
open subsets of B such that

Juv.=nB (2.41)

and E}Ui = U; x C® and define E to be the principal GL(rg, C)-bundle obtained
from the collection U x GL(rg,C) with the same transition functions as FE.
The natural GL(rg, C)-action on E is algebraic.

Define the relative flag variety or flag bundle Fl.(E) to be the quotient
E/P, and let p, : Fl.(E) — B be the projection. We often refer to F[,.(E) as
simply the flag variety of E of r-quotients.

There is a sequence of tautological vector bundles
0=RyCR1C--CR.CRey1=p.E", (2.42)

on Fl.(F), where rank R; = ry_;. The fibre of R; at x € F[,.(F) is the r;-plane
in £* determined by .
Define the line bundle £, on FI,(E) to be the pullback of the II¢_,pfO(s;)

line bundle on
Fl.(E) = P(A"E) x --- x P(A™E), (2.43)

which can also be written as the line bundle
(detRq)*' ® -+ - ® (det R,)% (2.44)

with the same relationship between the s; and A as in Equation [2.38]

The Borel-Weil-Bott theorem computes the cohomology of vector bundles
which can be written as tensor products of Schur powers of the successive
quotients R;/R;_1 fori =1,...,t+1, with the vector bundle R;,; understood
to be p*E. We state the theorem for line bundles £, where X is a partition

whose jumps are given by 7.

Proposition 2.24 (|88, Theorem 4.1.4)|). Let X be a partition in P(r), and

r and s are as above. In other words, \; > \,_1 if and only if the index i is
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contained in r, in which case \; — \;_1 = s;_;. The derived pushforwards of L

satisfy

p.Ly = FE*, (2.45)
and

R'p.Ly =0, (2.46)
foriv>0.

Remark 2.25. Since the conjugate of a partition A € P(r) can be written as

(TSC ,',.56—1

STy, . ,rfl) for some positive integers sq, ..., s., we have

A= (81, 8L Sy (2.47)

where S, =Y " | s;.

Remark 2.26 (The coordinate algebra of a flag bundle). The shape algebra
of a vector bundle is defined by functoriality and Definition 2.14 An explicit
description of the generators and relations of the sheaf of shape algebras locally
shows that it is isomorphic to the sheaf of algebras determined by the Pliicker
embedding. In other words the flag bundle F1,.(E) is isomorphic to a relative
projectivisation

Projp Sx(E) (2.48)

of the shape algebra. The consequence of this is that the algebra S(E) is the
relative analogue of a total coordinate ring.

We are not aware of a reference for the above statements, but it follows
from the local statement |34, Chapter 9]. If FI,(E,) is a flag fibre over a point
p € B, then the equations of F1,(E,) inside P(E) extend to a neighborhood
of p where F is a trivial vector bundle. By taking the sheaf of ideals generated
locally in this way we get the relations of Sy(E) inside S*(E?).

Viewing a flag bundle as a relative projectivisation of a shape algebra im-

plies a natural generalisation to arbitrary coherent Og-modules.

Definition 2.27. If £ is a coherent Og-module, we define the relative scheme

of r-flags (or relative flag scheme)

Fl.(E) =Projg Si(E). (2.49)
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It is naturally endowed with a relatively ample line bundle, determined by the
pair (£, \), which we also denote by L£,. We refer to this line bundle simply

the Serre line bundle on FI,.(E) if A is clear from context.

The statement of the following Lemma holds more generally [43], Proposi-
tion I1.7.10], but we prove a special case to spell out the relationship between
the line bundle £, and the projective embeddings of F1,.(E).

Lemma 2.28. Let E be a vector bundle of Og-algebras and let S\(E) be a
shape algebra for the partition \ and let p be the projection Fl.(E) — B.
There exists an mq such that the line bundle L,(L™) is ample for m > 0.
Morever, if E itself is ample, then Ly is ample.

Proof. Assume that F is a vector bundle on B. For any k£ > 0 and m > kcy ()

we have a natural isomorphism
(FL(E), LA(L™)) 2 (FL.(E ® L¥), Ly(L) (L™ W), (2.50)

The vector bundles \"(E ® L*) are ample for all i = 1,. .., ¢ by [41], Corollary
5.3], so the hyperplane bundles on P(A“(E ® L¥)) are ample for i = 1,... ¢
We can regard the pair (Fl,.(E), L,(L™)) as a subvariety in the product

P=P(\ (E® L") x - x B\ (Ew L"), (2.51)
where the line bundle £,(L™) is the restriction of
Op(S1,...,8:.) @p L™ (2.52)

which is ample. The map p is the projection p: P — B. The second claim

follows from the same proof with m = 0. O

Lemma 2.29. The Picard group of a flag bundle Fl.(E) is generated by line
bundles of the form L\(A), where A is a line bundle on B and the partition \
is in P(r).

Proof. This proof goes along the same lines as |88, Proposition 4.1.3|. O

Lemma [2.2] applies to flag bundles of G-linearised vector bundles.
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Proposition 2.30. Let £ be a G-linearised coherent Og-module of rank rg on

a G-variety B and let A be a partition. Then the affine relative flag scheme
Specx Sx(F) (2.53)
and the relative flag scheme
Projx S(F) (2.54)

are G-schemes. The relatively ample line bundle L, comes with a natural G-

linearisation.

Proof. The diagram

E} @ Bt ———— Eyte

| |

I } Atp
® Ep(%g) Ep(w,g)

E)\

p(z,9)

clearly commutes so the algebra S\ (FE) is a sheaf of G-algebras with a lineariza-
tion that preserves the grading. Hence, Lemma implies that the scheme
(Proj, L)) has a p-invariant G,,-action. O

Remark 2.31 (The functorial definition of flag schemes). One may also define
an object we call the flag-quot scheme Drap(r,£), which represents a functor

from the category of schemes to the category of sets defined by

locally free quotients
T O0r®E—Qr— - — Q. —0 (2.55)
on B x T with ranks given by 7.

We believe the scheme F1,.(£) is isomorphic to Drap(r, ).
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Chapter 3

A review of K-stability

This chapter reviews the preliminaries for the study of K-stability. In Sec-
tion [3.1) we define K-stability following Donaldson [27] with a refinement due
to Li-Xu, Stoppa and Székelyhidi [56], [79] 85]. In Section we give a self-
contained introduction to test configurations with the aim of providing back-
ground for Chapter[§] Eisenbud’s book [31] was a valuable reference for Section
3.2

3.1 K-stability

K-stability is given in terms of the following abstraction of the Hilbert-Mumford
criterion defined in Section

Definition 3.1. |27, Definition 2.1.1] Let X be a smooth projective variety
with an ample polarisation L. A test configuration for the polarised variety
(X, L) is given by the following data:

e a flat morphism 7 : 2~ — A! of schemes together with an isomorphism
{1} 2 X,

e an f-ample line bundle . on 2" such that the isomorphism given above
lifts to an isomorphism between & ‘ 2 = L for some positive integer r,
where 27 denotes the fibre 77*{1}, and

e an Z-linearised action p : G,, x & — 2 on Z that covers the usual

action on Al
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The integer r is called the ezponent of the test configuration. The fibre f~1{0}
is called the central fibre.

Remark 3.2. We will often refer to a test configuration simply by the scheme
Z if the rest of the triple (27,2, p) is either irrelevant to the discussion or

clear from the context.

Definition 3.3. Let (X, L) be a polarised G,,-variety where the action is
denoted by . Then the natural action on the product X x Al given by
s.(z,y) = (s.z, sy), for (s,2,y) € G,, x X x Al is called a product test config-
uration and denoted by Z,.

We also say that a test configuration 2" is almost trivial if the normalisation
of 2" is G,,-equivariantly isomorphic to a product test configuration induced

from a trivial action.

Let (Z°,%,p) be a test configuration. Then the pair (Zy,-%) is a G-
scheme, which induces a G,,-representation on the vector space H%( 2y, Z4y).
We define the total weight to be the trace of the infinitesimal generator A, of
the G,,-representation on H(Xy, Z¥). Alternatively, the total weight can be
defined to be the weight of the G,,-action on the vector space det H(Zy, %).
In order to define the norm of a test configuration we also define the trace

squared function as the trace of the square of the infinitesimal generator A.

Lemma 3.4. [28] There exist numbers ag,ay,bo, by and co such that for k

sufficiently large we have

h(k) == x(Z, AF) = apk™ + a1 k"~ + O(k"2), (3.1)

w(k) = tr(Ag) = bok" ' + bik" + O(K" ), (3.2)
and

d(k) == tr(A}) = cok" ™ + O(k™). (3.3)

We call the three functions h(k),w(k) and d(k) defined in Equation (3.1)) the
Hilbert function, weight function and the trace squared function, respectively,
following [21)].
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Following Donaldson, we define Donaldson-Futaki invariant of (Z°,.%, p)
by
. b(]al — a0b1

DF(Z) = (3.4)

2
ap

Define the norm || 27| of a test configuration 2 for (Z, A) with exponent
r by

e b2
|2 =r 2 <co — a_o) ) (3.5)

0

Definition 3.5. Let Test(X, L) denote the set of test configurations of (X, L)
which are not almost trivial. We say that (X, L) is

o K-stable if DF(Z") > 0 for all 2" € Test(X, L),

K-polystable if DF(Z") > 0 for all 2" € Test(X,L) and DF(Z") = 0

implies that 2 is a product test configuration,

K-semistable if DF(Z") > 0 for all 2" € Test(X, L),

properly K-semistable if (X, L) is K-semistable but not K-polystable, and

K-unstable (X, L) is not K-semistable.

If a test configuration 2~ contradicts any of the first three properties, we say
that 2 is destabilising.

Remark 3.6 (Complements). Examples of all of the above notions are known
in the strict sense. Any cscK projective manifold which admits infinitesimal
automorphisms is at most strictly K-polystable. Keller gave examples of prop-
erly K-semistable ruled manifolds [50, 49]. Slope unstable vector bundles on
curves have K-unstable projectivisations (cf. Chapter . Thus, examples of

all stability phenomena can already be found in the case of projective bundles.

Remark 3.7 (Invariance of K-stability under scaling). K-stability is well-defined

in the cone of polarisations
V(X) = Amp(X)/Qso, (3.6)

where Amp(X) is the cone of ample line bundles with rational coefficients.

Replacing a Kéahler form w by a multiple kw scales the cohomology class by
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the same multiple k and preserves constant scalar curvature metrics. Therefore
being cscK is well defined in the projectivised Kéhler cone as well.

We may also rescale the action by replacing 2 by a pullback under a
covering map ¢ +— t" of A = SpecC[t]. This has the effect of changing the
weight function by a multiple of the Hilbert polynomial, which does not affect

the Futaki invariant.

Remark 3.8 (K-stability and the Kéhler cone). A natural way to approach the
YTD correspondence is to compare the loci of K-polystable and cscK points in
V(B). If we assume that Aut(X) is discrete it follows from the work of LeBrun
and Simanca [55] that the cscK locus is open in the Euclidean topology. Not
much is known about the K-stable locus in general.

We return to the question of variation of the polarisation in Section 8.3
We would like to thank Dervan for pointing out the following example [23].

Example 3.9 (Explicit K-stable and K-unstable regions on blowups.). Let X
be a blowup of P? at 8 points with the polarisation L, = 3H — F; —a 2?22 E;,
where H is the hyperplane divisor and Ey, ..., Eg are the exceptional divisors
and a € R.y. Dervan showed, building on the work of Odaka-Sano [66], that
(X, L,) is K-stable for

%(10—\/@ <a< é(\/1_0—2)‘ (3.7)

Furthermore, by results of Ross and Thomas [68, Example 5.30], there exists
an ag > 0 such that (X, L,) is K-unstable for 0 < a < ay.

Example 3.10 (K-stable and K-unstable polarisations on a ruled threefold.).
Keller gave an example of a ruled threefold where there exist both K-stable
and K-unstable polarisations [48, Theorem 6.1.1]. The K-stable examples are
constructed using results of Hong [44], Arezzo-Pacard [9] and Stoppa [77],
while the unstable examples are obtained by an explicit calculation of Futaki

invariants somewhat similar to that done in Chapter

Remark 3.11. Tt is also natural to study real polarisations which may not define

a line bundle, parametrised by
V(B)r = Amp(B) @ R/R~y. (3.8)
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While Definition gave does not make sense for irrational polarisations, for
example the theory of slope stability due to Ross and Thomas does [68]. Chap-
ter [§ gives a method for parametrising test configurations along line segments

of V(B) where it may be possible to make sense of the irrational points.

3.2 An introduction to test configurations

A test configuration can be embedded into a projective space by Kodaira maps
of powers of the polarisation. Let (:Z7,.Z) be a test configuration for (X, L).
By Remark we may assume that % is very ample and that the exponent
of (2°,%) is 1. Then we have an embedding ¢ such that the diagram

X ——P(r.%)

U

Al
commutes. It follows by |28, Lemma 2| that there is an equivariant embedding
X — P x Al (3.9)

where the usual G,,-action on A' is lifted to an action on the pair (P*, O(1)).

Remark 3.12. A tacit identification (X, L) = (Z27,.41) is always made when

choosing a test configuration.
In the following example we will give a description of the degeneration

beginning with the projective embedding.

Example 3.13 (Test configurations embedded in projective space (cf. Exam-
ple 2.1)). Consider the projective scheme (X, L) associated to a graded ring
A= R/I, where

R =Clxo,...,,) (3.10)

and [ is an ideal generated by homogeneous elements of R. Let

¢:ReC[t, 1] » ROC[t, 1] ®Cls, 1] (3.11)
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be a homomorphism determined

s Mig;, fori=0,...,n (3.12)

st (3.13)

o(w;)
o(t)

where the integer w; is called the weight of the variable z; in the (co)action
w. We assume that all weights are nonnegative without loss of generality.
Similarly define the weight of a monomial z§* - - - x&™ to be aywy + - - - + Wy,
and the initial term in(f) of f € R to be the sum of terms of highest weight
intin f.
Define a family
X X G, CP" x Gy, (3.14)

whose ideal J C RJt, %] is defined by making generators of I invariant by
multiplying the variables with an appropriate power of ¢t. If f is a generator

of I, we define a generator g of J by
g(Toy .o T, t) =f (Mg, ..t Ty), (3.15)
where ¢ is the weight of the terms of in(f). The Zariski closure of the scheme
Proj,: R[t,1]/J C P" x A' (3.16)
is a flat family over A! whose central fibre is defined by the ideal

In(I) := (in(f): f € 1). (3.17)

The family of projective varieties Proj,i R[t]/J determined by the bigraded
ring R[t]/J is a test configuration for (X, L).

Remark 3.14 (The filtration associated to an embedded test configuration: A
continuation of Example [3.13). Here is another way to realise the ring R[t]/.J.
By rescaling the action if necessary we may assume that the largest of the
weights w; is equal to -1. We then define a filtration of A by C-vector spaces
F; A by setting

f can be written as a sum of monomials }

F;A=Spancq feA: ) ‘
of weight i or less modulo [
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For any element f € A we define the level of f to be the number lev(f) =
min{i : f € F;A}.
The ring R[t]/J is equivariantly isomorphic to the ring

Rees F, A = étiﬂ (A) C Alt], (3.19)

i=0
called the Rees algebra of FyA, by the isomorphism taking z; to t“ix;. Over
the central fibre () € A! we have

Alt]
t)+J

~ A/Inl, (3.20)

and a corresponding isomorphism for the Rees algebra

Rees F, A ~ é F 1A

o 3.21
where the latter ring is called the graded algebra of F,A.
Remark 3.15 (A generalisation of K-stability). The filtration
FA:0cC=FRACFHAC---CA, (3.22)

defined in Example |3.13], is due to Witt-Nystrom and Székelyhidi [89] 85] and

it has the following properties.
(i) It is multiplicative meaning that it satisfies (F;A)(F;A) C Fiij,.

(i) It is homogeneous, that is, homogeneous parts of any element of F;A are
all in F;A.

(iii) Every element in A has finite level.
(iv) The Rees algebra Rees F, A is finitely generated.

The test configuration 2  from Equation can be recovered from the fil-
tration [3.22 uniquely up to rescaling the action.

A filtration satisfying properties (i)-(iii) is called admissible. These prop-
erties were taken as an axiom by Székelyhidi in his formulation of K-stability,

which enlarges the set of test configurations Test(X, L) to include filtrations
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whose Rees algebra is not finitely generated. Without the assumption (iv) it

is still possible to consider a corresponding sequence (Z;) of test configura-

jeEN
tions. The test configuration Z; is determined by an approximation S; of the

Rees algebra A, where S; is the algebra generated by the submodule

J
@ F,At" C Rees F, A. (3.23)
k=0
It is easy to show that for ¢ sufficiently large Proj,: S; is a test configuration
for (X, L). Székelyhidi defined the Futaki invariant of this sequence to be
lim inf DF (%) (3.24)
1—00
and proved, together with Boucksom and Stoppa [80], the K-stability of a cscK
polarised variety (X, L), assuming it has no infinitesimal automorphisms.
While the limit of the sequence Z; is not an algebraic object, it has an
analytic interpretation in the space of Kéhler potentials [7I]. Therefore the
set of test configurations has a limited analytic compactification with respect
to these very special sequences.
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Chapter 4

A formula for the Chern character

of a Schur power

This chapter is entirely devoted to a technical result used in the computation
of the weight polynomial of a flag bundle. We let r and A be such that A € P(r)
throughout. We also fix a smooth proper scheme B of dimension b and a vector
bundle E of rank rg. Let p be the projection p: Fl.(E) — B.

Of independent interest would be finding a more general and more elegant
formulation for Theorem [4.3) (Theorem[C)), which gives a formula for the second
order asymptotics of the polynomial ch E** under certain hypotheses. Laurent
Manivel has previously calculated the highest order term in [60, Section 3.
Background on Chern classes can be found in the seminal work of Grothendieck
[40].

4.1 A formula for the Chern character

If P is a symmetric polynomial and F is a vector bundle with Chern roots
Tiy ..., Ty, we write P(E) = P(xy,...,2,,). On the other hand it also makes
sense to consider the polynomial P on the algebra generated by line bundles
on a variety and operations defined by direct sums and tensor products. In
this case we write P(Ly,...,L,,) for the resulting vector bundle, not to be

confused with P(FE), which is a cohomology class.
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Let
(T, ) = Z Tiy - Ty, (4.1)

1<11 <2< <ir<rp
denote the rth elementary symmetric polynomial in x4, ..., z,,. Similarly we

have the complete symmetric polynomial

hr(l'l,...,er) = Z iy * " Ty, (42)
Recall that Schur polynomials are a basis of the algebra of symmetric funtion,
which appear naturally when computing the cohomology of Schur powers of
vector bundles. We define Schur polynomials by using the Giambelli formula
[36, Appendix A] as

sy = det (h,\i—i-l—j)lgi,jgl (43)

associated to a partition A. In particular, sy = hy and syjx = ¢y

Definition 4.1. Define the canonical partition o = o,,, depending on the
parameter r by

o =rg+I\) —r"()—r (i) (4.4)
where 71 (i) is the smallest integer in r satisfying (i) > 4 and r~(i) the

largest integer in r satisfying v~ (i) < i.

Example 4.2 (The canonical bundle of a Grassmannian). Consider the Grass-
mannian case r = (p), where 1 < p < rp. Now the canonical partition o is the
constant partition (%), which corresponds to the rgth multiple of the hyper-
plane bundle in the case p = 1. Note that the relative canonical bundle of PE
over B is the dual of the corresponding line bundle £, .

Theorem 4.3. Let E be a vector bundle of rank E and \ a partition whose
gumps are given by r. Assume that X\ satisfies at least one of the following

conditions
o l()\) <4

o \=to,,, for somet € Q and rg > r..
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Then there ezist polynomials B;(E,\) € Q[A1,...\,c1(E),...,cp(E)] such
that

ch B* = rank E* (1 + B1(E,\) + Ba(E, \) + -+ - + B, (E, \)) (4.5)

where B;(E, \) is homogeneous of degree i as an element of the Chow ring of
X and of degree i in the \;. The polynomials B1(E, X) and Bs(E, \) are given
by

Bi(E,\) = Cl(/\iﬂ (4.6)
and
= he(Wha(E) | ex(Vea(E)
BB =1 1) T (s — 1)

reci(A) — ZZ(QZ — 1)\ ho(E) e (E)
(4.7)

where O(1) denotes a term independent of \. By the equivalence =, we mean
the following: If U and V are k-cycles in B, then U =, V if c;(A)" *.(U - V)
s equal to 0 for all line bundles A € Pic B.

It is straightforward to check in cases which yield to computer analysis that
it is not necessary to assume ¢ for the identity in Equation to hold, but
we were unable to find a proof in the general case. Under the assumption ¢,
we prove the statement using the following determinantal identity, which the

author learned from a paper [16] pointed out by Will Donovan.

Lemma 4.4 (Determinantal identity). Let E be a vector bundle of rank rg
and \ a partition of length . The Chern character of a Schur power of E s
chE* = det (ch(SY¥7E)).

/L’]

(4.8)

Proof. By the splitting principle [35, Remark 3.2.3] we may assume that F =
Li®---®L,,. Let p be a polynomial function on the set of factors Ly, ..., L,,

with integral coefficients a; for I = (iy,...,4,,). We denote
Dar

p(Ll,...,LrE):@<L?® ®L“E) , (4.9)

I
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Schur powers of decomposable vector bundles can be expressed in as

E* = sy(Ly,...,L,,), (4.10)

) TE
which we expand as a determinant using Equation (4.3])
S)\(Ll, . ,LTE> = det (h)\i—l-j—i(Ll; R 7L7"E)>7L,j . (411)
Taking Chern characters on both sides completes the proof of the Lemma. [J

Lemma 4.5. Let E be a vector bundle of rank rg. The Chern character of
the bundle S*E is

(k;+rE— 1) (1+@k+A1(E)k2+A2(E)k+Z), (4.12)

TE TE
where A1(E), Ay(E) € Q[xy ... 2] are given by
ha(E)

AB) = 2T (4.13)
. Ty — 1 hQ(E) CQ(E)
A:(B) = 2 (T’E(TE +1) re(re— 1)) (4.14)

and Z is a sum of terms of Chow degree 3 and higher.

Proof. Recall the definition of the monomial symmetric function m,, of parti-

tion p of length at most n. Given variables y = (y1,...,yn) we set
ma(y) = 3 ol (4.15)
0'6671
We have

ch(S*E) = ch hy(E)
=ch Z m,(E)

= (4 mry + pfaf /24 ) - (U @y + pir 7, /24 )
m

(4.16)

where the sum is over all rg-tuples that sum to k. The rest of the computation

is an elementary summation. The Chow-degree one part of ch(S*E) is

ch(S*E); = rank (S*E) @, (4.17)

e
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where

rank (S*E) = (k e 1). (4.18)

TE—l

The degree two term can be written as

Zi¢]<rE—3+k—z—J) me+z Q(TE_ijf ')Zx;/z

i=1 j=1 'e — l<m
(4.19)

which using the combinatorial identities proved in the appendix simplifies to

(k~|—rE—1 i (re+2k—D(k+re—1) <
(EDICES mexl+ Dy 1] n;xm/z (4.20)

Picking out the rank rgcp of S¥E as a common factor yields

L o = 2]{ +k?(TE—1) 9
chy(S E)_rSkE< rE+1 Z L S | > al /2 (421)

m

Recall that the Chern classes of F, when written in terms of the z;, are

c1(E)? = hy(E) + co(E Z T, + 2Za:mxl (4.22)

m<l

and

ca(F) = Z:Bm:vl. (4.23)

Thus we have

ch (S*E) = rank(S*E) (1 + alb) k+ Al(E)KE* + Ay(B)k + Z) . (4.24)

e

where ho(E)
A(E) = —22 4.25
1( ) TE<TE + 1) ( )

Ay(E) = (re —Da(B)? o) _re—1 ( ho(E)  clB) )
2 27’E(7’E+1) TE+1 2 T’E(TE+1) TE(TE—l)

(4.26)
and Z is a sum of terms of Chow degree 3 and higher m

Remark 4.6. The length of a partition A whose jumps are given by r is the

largest integer 7. in r.
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Proposition 4.7. Theorem[].3 holds for partitions up to length 4.

Proof. This is an easy calculation for a computer using Lemma[4.5and Lemma
[1.4 [47, Calculation of Chern classes for Schur powers|. O

Remark 4.8 ([60, Section 3|). Alternatively one may expand the Chern char-

acter of S¥F as
" a, . (k —1
a1 Di re — 1+ |p|

where p, ¢ range over r-tuples of nonnegative integers and a; ; is the jth coeffi-

cient of the ith Euler polynomial [60, Proposition 2.2]. This way the existence

of claimed decomposition
ch(S*E) = rank(S*E)A(k) (4.28)

is clear for higher degree terms as well. The determinantal identity implies

that we have

ZPLEp re+ N+ lgl—i+7—1
Ch(E)‘) = Z ﬁamm ©lpg det <( l + |Z ‘ -1
pi,qj ENTE pr: pr: e pi 1<tg<t

(4.29)

Let p: PE — X denote the projection. It is well known that we have the

pushforward formula

/P pecr (Oes(1)) = [ o) (4.30)

X

This formula generalises to the following theorem by Laurent Manivel.

Theorem 4.9 (|60, Proposition 3.1]). Let A be a partition whose jumps are

gwen by r and mZs=y. Then we have

1 (,C)\)Ner

Py = G sulMsuB) (4.31)

1N
|ul=m, L (1) <I(N) o1 (re 4 — k)

where C) ., = Hi(;\l)(er(z) — ) 15,50, (A = A;). Form =n we have equality
of cycles, while for m < n, the relation =, is the one defined in Theorem [{.3
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Remark 4.10. The result stated in [60] actually claims equality at the level of
cycle classes. As we were unable to reproduce the details which were left for
the reader in the paper, we state a slightly weaker result, but this is enough

for our purposes.

Remark 4.11. Although the highest order term of each B;(E, \) is a symmetric
function with respect to the A, this is not the case for the lower order terms,

or indeed for the entire Chern character.
Remark 4.12. In particular, Theorem computes the leading coefficient
C)HTE
T8 :
Hz(:1) (re —1)!

of the Hilbert polynomial of a fibre 7=!(z) for any = € B.

(4.32)

Aer =

Remark 4.13. We can write the line bundle £, in terms of the tautological

subbundles as .

) (det Ry) #1771 (4.33)

i=1
Lemma 4.14 (Canonical bundle of the flag variety). The canonical class of
Fl.(E) is
ci(L_y@p* (Kp @ det B')), (4.34)
where o is the canonical partition defined Definition and L_, denotes the
dual of L.

Proof. Consider the exact sequence
0 — Ve, ey — Tr.(e) — Hp — 0 (4.35)

where Vi (g) is the relative tangent bundle of the fibration FI,.(E) — B,
Tri.(p) is the tangent bundle and Hp is isomorphic to the pullback of the
tangent bundle of the base B. The relative tangent bundle Vz; (g) has a
filtration

0CF C---CFyCVrp (4.36)

such that

N
Pria/F= P 229 (4.37)
=1

1<i<j<c
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This can be seen by successive fibrations by bundles of r’-flags, where 7’ is a
subset of r [52]. We have

det(Vry, ()" = det ( P 209 ) (4.38)

1<i<j<c

Denote det R} = L; and define

A(k) —det( & Q1®Q>:det< B Ri/R @R;R;- 1).

1<i<j<k+1 1<i<j<k
(4.39)

We expand the determinant of the vector bundle of Equation (4.37)) as

det( ar) Q2®Q> :det< ay) R;/R;_léanj/nj_l).

1<i<j<c+1 1<i<j<c
(4.40)
This is convenient to write in additive notation as
> (=(ri=ric) (Lj = Lis) + (rj = rjo1) (L — Licy)) . (4.41)
1<i<j<c+1
We have
A(l{?) - A(k} — 1) = rkLk_l — T‘k_lLk. (442)

for any 1 < k < c. Therefore, we can see that the sum in Equation

telescopes and we find

C

Alc) = Z(nﬂ — 1)Ly —reLesr. (4.43)

i=1

Finally, the identity
Kri, () = —A(c) + p" KB, (4.44)

follows from Equation This completes the proof of the Lemma. O

Lemma 4.15. Let r be an increasing sequence of ¢ positive integers. Then

0 = 0y 15 a partition of length r. with r. < rg. We have

lo| = rgre, (4.45)
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Te c—1

2(22 — 1)0’1 = TgT’E - Z TiTi+1 (T’i+1 - 7’1')7 (446)

i=1 =1
and

c—1

1

hz(O’) = 5 (T’CT’E Te +1 + ZT’ Ti11 7’1+1 )) s (447)
=1

Proof. The proof is a direct calculation. We prove the third identity, which is
marginally more difficult than the first two. First notice that given an integer

n and an [-tuple \, we have

I(l+1
ha(n+ X) = ( 5 )n2 + (L + 1)n|A| + ha(N). (4.48)
where n is considered to be the constant I-tuple (n,...,n). Applying this in
the case n = rg + r. and A = —(r* + r7) it suffices to show that

c—1
1
hg(?“+ + 7"_) = 5 (rg(rc + 1) + Zl T’iTi+1(Ti+1 — Tz)) . (449)
This is proved by induction. Let s be the tuple (r1,...,7.-1). We then have

ho(rt +7r7) —ho(s™ +57) = (rc A+ Te1)?(Te = Te1) (e — Tee1 +1)/2
+ Z — 1i1) (1 + 1im1) (Te = Te1) (re + 7e-1)

= 'r’g’('r’C +1)/2+ 7”671(7’@71 +1)/24rereq(re —1re-1)/2
(4.50)

from which the claim follows. OJ

Let N, , denote the relative dimension of a bundle of r-flags, given by

[

Nigr = Zri(ri—&—l —Ti), (4.51)

i=1

with the convention r..1 = rg.

Proof of Theorem[{.3 Retain the notation in the statement of the Theorem
and denote N = N, ,. Assume that A\ = to for some ¢t € Q. The leading order
term of By(FE, kM) in k is

el (LN ha(Mha(E) | ca(Nea(E)
(N2 T Dars (T’E(T‘E +1) * re(re — 1)) ’ (452)
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by Theorem The term By (FE, kA) can be computed easily using the split-

ting principle. In general, we have
c1(E*) = rank E*ce;(\)ey (E) /rp. (4.53)

It suffices to verify that the k-linear term of By(E, k) satisfies the claimed
identity.

For any line bundle L on the base B, the Hirzebruch-Riemann-Roch formula
applied to the vector bundle (£ ® L)M yields

x(B, E¥7) = / ch L*A ch E¥Td g
B

b (4.54)
/ PPt kwcl hE’“Td
B =0
Moreover, we have
LN L) e (4) .

N+l & N+ (i)

forallm > 1 and A € Pic B.
By the asymptotic Hirzebruch-Riemann-Roch formula on FI.(E) for the
line bundle £(LM)®* we have

C1{ L) A\ N+b Mo

c1(Lx (L‘M))NH) 1Kfl N+b—1 N+b—2
a 2(N +b—1)! 'k )+O(k )

(4.56)

The remaining part of the statement then follows by comparing the k-degree
b — 1 coefficients of the ¢;(L)*~? term in Equation (4.54) and Equation (4.50)),
latter of which is equal to

Mf/C%thﬁ-@ﬁmwmwﬂmmww+m»q@“>

2t(N +1)! 2(N+1)! (b—2)!"
(4.57)
by Lemma We write
BQ(E, k)\) == szQ’Q + ]{ZBQJ + O(l{?()) (458)
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and expand the Chern character in of E* as

N
ch E™ = D, (kN + o O<k°>> (1+ Bi(E,kX) + k* By + kBy,y) -

(4.59)
We can see that
Boy = (hz(A)hz(E) c(Nea(E) l(A)Mlcl(E)Q) 7 (4.60)
tre(rg+1)  tre(rg —1) 2rg
which can be written as
t((rg —1)ha(o) — (rg + 1)c2(0)) < ho(E)  (E) ) (4.61)
2rg re(re+1) re(rg+1))’ '
Finally by Lemma [4.15| we have
(rg — Dha(o) — (rg + 1)ca(0) (rg + 1)er?
or = halo) = ——5
E
DT — 1)
2
IRIC I S L B
n e — 1
e DA,
N rg — 1
This completes the proof. n

Remark 4.16. In general, there is a simple relation between the classes Bs o(\, F)
and Ay(E). Namely we have

TE—l

c1(N)’ei(E)?
27"E2 '

Bsyo — Ay (M) A2(E) = (4.63)

Remark 4.17. The same calculation can be used to find the codegree 1 asymp-
totics of B;(E, kA) in any Chow degree, when A = ko for some k € Q. Keeping
to the same notation as in the proof, we have

Z\m:m Su(A)su(E)

H2:1<TE + i — i)

Lo, (m 2 ui=m SuN)su(E) [ Aen(E) 3 =m SW(A)SW(E))

Bn(E, k\) = k™Ch,,

2T, (e + s — 9! 21, (re + pi — 9)!
+ O(kmf2>’
(4.64)

for any m > 2.
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Chapter 5

K-stability of relative flag varieties

Fix the following notation. Let E be a vector bundle of rank 7z on a polarised
smooth complex variety (B, L) of dimension b, and FI,.(E) the flag bundle
of r-quotients of E with projection p onto B. Also fix an ample line bundle
Ly(A) = Ly®@p*Aon Fl.(F), where A is in P(r) and A is an ample line bundle
on B.

In Section we construct a test configuration (%%, Z\(A)) which we
conjecture to be sufficient for detecting the K-instability of the flag bundle
(Fl(E), Ly(A)) assuming that the base B is stable.

From now on, we assume that X is in P,(r). Section calculates the

Donaldson-Futaki invariant of %7 if we assume the base to be a curve.

Theorem 5.1. Assume that B is a curve, E is ample and F is a subbun-

dle of E whose degree is positive. There exists a test configuration % for
(FL.(E), LA(A)) such that

DF (%, L1(A)) = C (e — pir) - (5.1)
for some positive constant C' depending on E, F, g and r.

In Section we outline a similar calculation for adiabatic polarisations

on a flag bundle over a base of arbitrary dimension.

Theorem 5.2. Assume that F is a saturated torsion free subsheaf of E. Let

L be an ample line bundle on B and assume that A = L™. Then there exists
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an integer mg and a test configuration %5 for (Fl,.(E), LA(L™)) such that for
m > myg the Donaldson-Futaki invariant of %= is given by

DF(%r, Z\(L™)) = C (ug — px) 5 + O(55) (5.2)
for some positive constant C' depending on E, F, B and r.

These results immediately imply the stability statements of Theorem [A]
and Theorem [B] from Section [T.4l

Theorem 5.3 (The K-instability statements of Theorem A). Assume that B
is a curve, E is an ample vector bundle on B and A is ample. If E is slope
unstable and X is in Ps(r), then the flag bundle (F1,.(E), LA(A)) is K-unstable.
If E is not polystable, then the pair (Fl.(E), LA(A)) is not K-polystable.

Proof. Fix a destabilising subsheaf F of E' with maximal slope. The saturation,
which by definition has a torsion free quotient, also destabilises. Torsion free
coherent sheaves on a curve are locally free, so we may assume that F' is a
subbundle. In particular E/F is locally free. The claim then follows from
Theorem (.11

To prove the second assertion, let ' be a subbundle of F with maximal
slope such that p(F) = pu(FE) and assume that F' is not a direct summand.
The scheme %4 is smooth, so in particular it is normal. It follows that the test
configuration is almost trivial only if it the total space FI,.(€) is isomorphic
to Fl.(E) x A [T9]. The two schemes FI,(E) and Fi,(F & E/F) are not
isomorphic since it is possible to construct an isomorphism of underlying vector
bundles from an isomorphism of flag bundles which preserves the polarisation.
Therefore the bundle FI,(E) is not K-stable. O

Theorem 5.4 (Theorem B). If E is slope unstable and X\ is in Po(r), then
there exists an mq such that the flag variety Fl.(E) of r-flags of quotients in
E with the polarisation L\(L™) is K-unstable for m > my.

Proof. Follows immediately from Theorem [5.2] O

An identical argument to [68, Proposition 5.25] which will not be repeated
here shows the following instability result which is also discussed in Example
3.07
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Proposition 5.5. If the base (B, L) is strictly slope unstable in the sense of
[68, Definition 3.8/, then there exists an mqo > 0 such that (FI.(E), Lx(L™))

is K-slope unstable for m > my.

5.1 Simple test configurations on flag bundles

In this section we define the relative test configuration (#%r, £\(A)). First,

recall the following standard construction.

Definition 5.6 (The extension group of a coherent sheaf). Let F and Q be
coherent sheaves on B and let p;: B x A’ — B be the first projection. An
extension of @ by F is a coherent sheaf £ together with maps of Og-modules

which fit the short exact sequence
0—>F—=E&—=Q—0. (5.3)

Extensions are parametrised by the vector space V = Ext'(B, Q, F ) and there
is a universal extension & on B x V whose fibres are the corresponding ex-
tensions £’. The sheaf U is naturally C*-equivariant for the scaling action on
B x 'V which acts trivially on B.

Consider the reverse point of view where F is a fixed vector bundle fitting

an exact sequence
0O—>F—>E—Q—0. (5.4)

Remark 5.7 (Turning off an extension). Let E be a locally free sheaf on B
and F a quasicoherent subsheaf of E' with quotient Q. We abuse notation by
writing piF as Elt] (we tacitly identify the algebra C[t] with the associated
sheaf on A'), and identify £7 as the subsheaf

EF =piF +tpiE C piE = EJt]. (5.5)

The sheaf £7 is naturally isomorphic to the pullback of the universal extension

under the inclusion

B x A' = B x Ext'(B, Q, F). (5.6)
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There is a natural G,,-linearisation on £ of the standard G,,-action on
B x A'. The fibre over s € A! of the sheaf £7 is given by

E7 ~ E if s=#£0 (5.7)
(=5 | FoQ ifs=0.
In particular, the fibre of £ over s = 0 is fixed by the G,,-action, and so are
all the fibres of F & Q over B x {0}, so the linearisation is determined by a
simple scaling action on the sections. Over the central fibre a section over an
open set U C B can be written as

F
tEF
Therefore we can write o uniquely as f + ¢ (e + F(U)) + t*E(U). The scaling

action on A! acts on the section ¢ with weight —1.

o= f+te+tEX(U) € — (U) (5.8)

We may renormalise the natural G,,-linearisation on £ to scale sections
of F with weight 1 and sections of Q with weight 0 over the central fibre. By

Lemma [2.2] we have an induced G,,-action on the relative flag scheme
Fl.(E7) = Projguu SA(ET) (5.9)

with a natural linearisation on the Serre line bundle which we denote by .%.
The central fibre is isomorphic to FI.(F @ Q).

Let 2 be the line bundle on #r = Fl,(E7) corresponding to a partition
A € P(r). The G,,-action on E induces a linearised action on (#x, . %). We
extend this action trivially to any line bundle £\ (f*A), where A € Pic B and
f: B x A! — B is the projection. We will abuse notation by writing this line
bundle simply as £\ (A).

Claim 5.8. Assume that B is a curve, E is an ample vector bundle on B and
A is an ample line bundle on B. Let F' be a subbundle of E of positive degree
and maximal slope with quotient Q. Then (%r, L\(A), p) is a test configuration
for (FlL.(E), Ly).

Proof. 1t suffices to show that the polarisation %)\ (A) is ample over the central
fibre. Since E is ample, we may assume that A = Og. By Proposition [2.19] it
suffices to show that F' & () is ample.
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The bundle E/F is ample since it is a quotient of an ample bundle. The
subbundle F' has positive degree and it is stable so it is ample by [42] Section
2|. Therefore the Schur power (F & Q)* is ample by Proposition , which
proves the claim. O

Remark 5.9. We fully expect the statement of Claim [5.8| to be true if F' is as

above and we only assume £,(A) to be ample.

Claim 5.10. Let L be an ample line bundle on B. Then the pair (%, \(L™), p)

is a test configuration for m > 0.
Proof. This follows immediately from [43], Proposition 7.10]. O

We call the G,,-linearised pair (Fl,.(E), £\(A)) the simple test configura-
tion induced by F.

Assume that the scheme (%7, %\(A)) is a test configuration and let h(k)
and w(k) be the Hilbert and weight polynomials. Let p; and p, be the two
projection of the product B x P! and define the vector bundle

E = piF @ p3Oz: (1) © piQ. (5.10)
We write the vector bundle E simply as E = F(1) ® Q.

Lemma 5.11. The weight function w(k) of the action p and the Hilbert func-
tion h(k) = h°(Fl,.(E), L(A)*) satisfy the identity

w(k) + h(k) = x(B x P', E* @ pi A). (5.11)

Proof. Assume first of all that A = Op. By the Littlewood-Richardson rule
(see [88, (2.3.1) Proposition|) we have the decomposition

BN = @P(F) @ Qr)*Mo, (5.12)

where the sum is over all partitions v and p whose sizes sum up to the size of
A and the coefficient M;\# is the Littlewood-Richardson coefficient. Using the
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Kiinneth formula, Riemann-Roch on P! and additivity of the Euler character-

istic we see that

X(BxPLEY) =Y M) x(BxP F'&Q"® Op(lv])

(TP

= > (W + DM, xX(B, F* @ Q") (5.13)
[T

= X(B,EM+ 3 IX(B, (F" @ Q*)Mow).

W+ =2l

Assuming that the vector bundles E* and E* are ample, the weight w(k) is

given by
wik) = Y wih (B, (@ Q1) (5.14)
[|+lpl=(Al
Finally, the calculation works verbatim if the bundle A is nontrivial. m

Using Lemma we can calculate both the Hilbert and the weight poly-

nomials using the Hirzebruch-Riemann-Roch formula. For the former, we have
h(k) = / ch(E*) ch(A)Tdp, (5.15)
B
and similarly for the latter, we have
w(k) = / ch(E™) ch(A)Td gy — h(k). (5.16)
BxPl

There exist integers ag, a1, by and b, so that we can write

X(B, E™) = rank E* (aok” + a1k* " + O(k*?)) (5.17)

and

X(B x P!, E*) = rank ™ (k"™ + b,k® + O(K*™1)) . (5.18)
The common factor cancels and we get

boa; — b 2
DF (%, 2,(4)) = 2270 1% (5.19)
0

for the Donaldson-Futaki invariant.
The Chern classes of the twisted bundle F appearing in Equations ((5.17)
and ([5.18)) are given by the following Lemma.
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Lemma 5.12. Let E be the vector bundle defined in Equation (5.10) and h is
the fibre of a point under py. We have

= X N . rr(rp + 1)h?
ho(E) = rppici(EYh + piey (F)h + piho(E) + rr(re + 1)h

2
_ T‘F(TF - 1)h2
E) =rppiai(E)h — piei(F)h + piey(E) + ———5——
c2(~) repici(E)h — pre(F)h + pres(E) + 2 (5.20)
c1(E) =piar(E) + rrh
AQ(E) ___r (plcl(E)h — plCI(F)h> + Z
rE + 1 ) TF

where Z is contained in the image of p; and the class AQ(E) s defined in
Lemma[{.5

Proof. The proposition follows by direct computation from the Whitney sum
formula [35, Theorem 3.2] and the general fact that we have

k S

r—1+ ,

cx(F®L)= Z ( j j)ck_j(f)cl([/)] (5.21)
j=0

for any locally free sheaf F and line bundle L [35, Example 3.2.2]. Alterna-

tively, one may get the result using the splitting principle. O

Remark 5.13 (Optimal test configurations). Before proceeding with the proofs
of Theorems[5.J]and [5.2] we make a naive but natural conjecture to make about
the optimality of the test configuration %%. Assume that B is K-stable and F
has maximal slope in the set of torsion free subsheaves of E. We conjecture
that the test configuration %% is a maximally destabilising test configuration

of (Fl.(E),Lx(A)) in the sense that the quantity % is bounded below by
DF (%)

Yr
Optimality of test configurations in this sense was studied by Székelyhidi
in the case of toric varieties [83]. The difficulty in the general case stems from
the difficulty of parametrising the collection of test configurations, which is a

partial motivation for our work on filtrations in Chapter [§|

5.2 Flag variety over a curve
The aim of this section is to prove Theorem [5.1]

63



Proof of Theorem[5.1 Let B be a curve. Let F be a subbundle of E and
A a line bundle on B such that the polarised scheme (%', £\(A)), where
% = Fl.(E7), is a test configuration for (FI.(E), L(A)). We may assume that
EX® A is ample, since twisting by the pullback Op:(1) leaves Equation ({5.19))

invariant. We will show that the Donaldson-Futaki invariant of the test con-

figuration (%, £\(n*A)) satisfies

DF(%) = Cy p,ap(fte — ptr),

(5.22)

where C' is a positive number depending on B, A, E, F and A\. By Riemann-

Roch the Hilbert polynomial of £5(A) satisfies
X(FL.(E), L") = rank E* (aok + ay) ,

where

ap = c1(AN)pg + fea,
ap=1-—g.

Using the Riemann-Roch formula on B x P!, we can write

X(B, B> @ L'™) = / " A ch(E*)Td g ypr.

BxP!

By Theorem [£.3] we have
hO(B x P!, E*) = rank E*(bok? + bik + O(1)),

where denoted

ho(Mha(E)  eos(Nea(E)  ar(\) =~
re(rg +1)  re(rg—1) + rE a(B).a(4)

by =

and

Cl(/\)cl(E>.KBXpl Cl(A).KBxpl

— H\A,(E) — —
b rA2(E) g 9

Here the class Ay(E) is defined in Equation (£.14) and we write

reci(A) = D0 (2i — 1)>\z'.

TE—]_

Hy =
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Let g and h be the two fibres of the first and second projection of the product

B x P!, respectively. The intersection matrix with respect to this basis is

01
(1 o)' (5.30)

As a special case of Lemma [5.12 we have
Cl(E)Q = QTFTE,U,E. (531)

Calculating the intersection classes appearing in Equations (5.27)) and ((5.28)
gives
C E K 1
B RBE (g (rpp)g) (0 (1 0)g)
(1—g)er(E)?

(6] (A)'KBX[F”

SOEEEE g (bt (1 g)g) = pua, and

e (E).ci(A) = rppa.
Let y = (y1,...,y;) be variables. For any such y define the symmetric polyno-

re =1 ha(y) c2(y)
AZ(y) B 2 (TE(TE+1) B T’E(TE— 1)) ' (533)

Using the above calculations and Remark we then have

=Tgip +

mial

- 2. (172
bo = MAQ(A)AQ(E) + c1(N) Czl(E) n 01(>\)7’F,UA7
et s e (5.34)
~ 1— )2 E :
by = HyAo(E) + ag + ( g)021( Jei >,
2rphe

By direct calculation, and Lemma the Donaldson-Futaki invariant defined
in Equation (5.19)) is given by
DF(#) = (a1bo — aoh + ag) /ag (5.5)
= g,E,A,,\(,uE - ,UF), '
where the constant C, g 4 x is given by
rr
(re+1) (a(MNpe + pa)’

Cop AN = 29— 1D)(re + 1)142()\)) .

reg — 1
(5.36)

(HA (ex(Naz + 14) +
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We are left to verify that the constant Cy g 4.5 is positive. For g > 1, it suffices
to show that H) and As(\) are positive since ¢1(A) g+ 4 is positive as £, (A)
is ample.

Using rg — 1 > r. and recalling that r. is the length of A, we have

(rg + Dre(rg — 1)As(\) = (rg — 1)er(N)? — 2rges(N)

= (rp—1) Z_; A2 AN (5.37)

1<i<j<re

1<i<j<re

We have

l c

> @i—1A =D (M) (5.38)

i=1 j=1
where )\ denotes the conjugate partition of A\. To see that the first term of
Equation (5.36) is positive, notice that

s

eci(N) = Y (20— D)X\ =Y N(rp— X)) >0, (5.39)

i j=1

which is positive since rg > r. > A} for all 7. Hence Cy g 4\ > 0 for all g > 1.

A similar calculation shows that Cy g 4. is positive. O

5.3 Flag variety over a base of higher dimension

Our aim is to prove Theorem We proceed in two stages. First, we assume
for simplicity that the test configuration is induced by a subsheaf of E. Finally,
we use Proposition that this can be done without loss of generality.

Proof of Theorem[5.9 By Proposition we may assume that F' is a sub-
bundle. We will show that the leading term in m in the Donaldson-Futaki
invariant of the test configuration (%, £\ (piL™)) is

D prr(W(E) = p(F)), (5.40)
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where Dg ) 1. is a positive number depending on B, L, E, F' and A. Here p;
is the first projection from B x A!. Expand the Chern character of E** as

b

ch B = " ch; B (5.41)
i=0
and the Todd class of B as
b
Todd(B) = ) _ Todd;(B). (5.42)
i=0

We then have

X(FU(B), LA(L™)*") = x(B, E** @ L™)

= / rg™ ch( E*)Td(B)
mk)®
= ( b!> w’ rank(E*)
(mk)"™ 4 i C1L(B) | kei(Ne(EY)
+(b_1)!w (rank(E ) 5 + TE >
+ ?:f) e (‘rank(E") Toddy (B) + kcl(k)cl;i JalB) | chy(E*))
+O(K"),
(5.43)

which follows from Riemann-Roch and the pushforward formula of Proposition
2.24] Here Tdy(B) is the second Todd class of B. Using Riemann-Roch on
B x P!, we similarly compute the Hilbert polynomial of E*@ pi L™, where p;
is the first projection.

To apply Lemma choose mg so that the bundle £ ® Lot is ample
and assume from now on that m > my.

As in Section [5.2] we write

r%(B, EF Lmk) = rank E* (aokb +a kP + O(kbfz)) 7

N 5.44
h(B x P!, E* @ L™) = rank EF* (bok"! 4 b1k® + O(K*™1)) . (54

67



Next, we expand the a; and the b; in powers of m as

bo = boom® +boim’t 4+ O(m"?), (5.45)
by = biom’+bm’ 4+ O(m"?), (5.46)
ay = ao,omb + a071mb_1 +O0(mb?), (5.47)
a; = ammb + aumb_1 + O(mb_Q). (5.48)

Let w = ¢1(L) and n = p{w. Using Theorem and equation ([5.43]), we see
that

N c1(N) b =
bo,o = - b!77 -Cl(E)
b o~ 1 ! ha(M)ha(E) n ca(Nes(E)
0.1 (b — 1)' ' ’I"E(T’E —f- ].) TE(TE — 1)
b _ _TIb-KBxuM
b0 2.0

1 ~ el K oo (E
by = )' (nbl.H,\AQ(E)— 1< )77 erxp 1( ))

(b—1
wb ~ degL
e

apo = bl
c1(A) b—1
= —— .c1(F
awi = o Al
1o = 0
wb—1 Kp deg Kpg
ar = - = -

2b—1)!  2(b—1)

The proof of the following lemma is a straightforward calculation.
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Lemma 5.14. The intersection numbers appearing above are
W’ = degL
Wle(E) = rpug
VTN Kg = deg Kp
nb.cl(E) = deg L(rga+rg)
nb’l.cl(ﬁf = 2rprgup

n”‘l-cQ(E) = Tprglp —TrPUF
nb_l.KBXchl(E) = fdegKp—2rpug
"’ Kpypr = —2deglL
b = TE(ME - ,UF)
Ay(E) = —— -2
n.Az(E) ——

We write Laurent expansion of the Donaldson-Futaki invariant in m

DF(Z, Lem, p) = Fo + Fym™' + O(m™?), (5.49)
where
deg L\*> [degL\>
Fyag = a1,0bo,0 —aoobio + agy = — < g' ) + ( g‘ ) =0 (5.50)
—— ’ b! b!
=0
and
Fyag = a19bo1 +a11boo — ao1bio — bi,1ao0 + 2a0,000,1- (5.51)
——

=0
An elementary calculation similar to the one we did in Section [5.2] shows that

DF(Z, L\(piL™)) = Dpa g (e — pe)m™" + O(m™?) (5.52)

where
T’FbH)\
(rg+1)deg L

is a positive constant by the same argument as in Section [5.2 Theorem

DpaLry = (5.53)

then follows from the following Proposition. O]

Proposition 5.15. Using notation from Section let (F1.(E7),(L™))
be a test configuration for (Fl,.(E), LA(L™)) where F is a saturated torsion
free subsheaf of . Then the formula

DF(F1.(E7), A(L™) = Dearr, (e — pr)m™" + O(m™?) (5.54)
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for the Donaldson-Futaki invariant still holds for m > 0.

Proof. 1t follows that E/F is also torsion free, and F and E/F are both
locally free over an open subset U whose complement is of dimension at least
2. The leading order terms in m of h(k) and w(k) given in Equation ([5.45)) only
involve the first Chern classes of F and E/F. But the first Chern classes can
be computed over the open set U where F' and E/F are locally free. The Schur
functor commutes with localisation, so Theorem [4.3] holds for the restriction
(]—" ®E/F A) ‘U. Therefore, we may assume without loss of generality that F
is a subbundle. m
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Chapter 6

Uniformisation theorem for flag

bundles over Riemann surfaces

We show that there is a simple extension of the Uniformisation Theorem to
flag varieties of polystable vector bundles over Riemann surfaces.
Throughout this chapter we let C' be a curve and denote its fundamental
group by I' without reference to the choice of a base point. Let C be the
universal cover of C, which is one of the three model spaces given by the
Uniformisation theorem. Let 7 be the canonical projection C — C and o the

covering action C' x I' — (.

Theorem 6.1. Let E be a polystable vector bundle on C' and let Fl.(E) be a
flag bundle of E over C. All Kihler classes in Fl,.(E) are cscK. In particular,
Fl.(E) is K-semistable for all polarisations.

We obtain a partial Yau-Tian-Donaldson correspondence for flag bundles

on high genus curves using Theorem [6.1]

Theorem 6.2. Let (Fl.(E),L\(A)) be a polarised flag bundle on C.

If E is polystable, the flag bundle (Fl,(E), LA(A)) is K-semistable. If E is
stable and g > 2, then the variety (F1.(E), LA(A)) is K-stable.

Finally, of E is simple and g > 2, the YTD correspondence holds for any

line bundle L\(A) with X € Po(r) and A ample.

We prove the following Lemma in Section [6.2]
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Lemma 6.3. If the vector bundle E is simple and the genus satisfies g > 2,
then the automorphism group of Fl.(E) is discrete.

Proof of Theorem[6.2. The first statement follows directly from Theorem
and Proposition [I.3]

For the second statement, we also need Lemma [6.3] and Proposition
which strengthens Proposition in the case of a discrete automorphism
group.

If E is polystable, the final statement follows from the second statement.

If F is simple but not polystable, then we can construct a destabilising test
configuration for (Fi,(E), LA(A)) by Theorem [5.3] O

Remark 6.4. In order to prove a full YTD correspondence on flag bundles
over curves one would need to analyse the delicate cases when FI,.(E) admits
vector fields. By Equation and the preceding discussion we see that this
may happen when the base curve C' is an elliptic curve and when FE is properly
polystable, that is, isomorphic to a direct sum of stable vector bundles of equal
slopes. If the base curve C' is isomorphic to P!, Grothendieck’s theorem states
that any holomorphic vector bundle F can be decomposed into a direct sum
D2, Opi(m;) for some m; € Z fori=1,...,7g [39).

6.1 Construction of flag bundles from represen-

tations of the fundamental group

Let GG be an algebraic group and p: I' — G be a representation. We define the
associated bundle with fibre G [51]

E,=CxG/p (6.1)

by the identification
(c,g) ~ (a(v,0),p(7)9) (6.2)

for (c, g) € C x G and v € I'. The quotient space E, is an algebraic principal
bundle over the curve C.

A representation p: I' = GL(e, C) determines a vector bundle E, by setting

E,=0CX C’“E/F (6.3)
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by the identification in Equation (6.1)) with GL(e, C) acting on C"Z in the usual
way. The vector bundle F, and its associated frame bundle E, have natural
Zariski trivial algebraic structures since the fibre of E, is GL(rg, C) [73].

A locally trivial holomorphic fibration with fibre F' is a holomorphic map
f: M — M’ of complex manifolds M and M’ such that each point x € M’ has
an analytic neighborhood U C M’ such that the restriction of f to U is given
by the first projection U x F' — U.

Theorem 6.5. Suppose that E is polystable vector bundle over a (complex,
smooth, projective) curve C. Let P, denote the image of the parabolic subgroup
P, C GL(rg,C) in PGL(rg,C). Then there exists representation p: I' —
PGL(rg, C) such that the holomorphic quotient map

C x PGL(r,E) / p — Fl,(E) (6.4)
15 a holomorphic locally trivial fibration with fibre T'.

Proof of Theorem[6.5 Let E be the frame bundle of E and define the projec-

tivised frame bundle
E=E/g , (6.5)

where G,,, acts via the inclusion
A= A € GL(rg, C) (6.6)

for A € G,,. By the Narasimhan-Seshadri Theorem [2.7] there exists a repre-
sentation p : I' = PGL(rg, C) such that E is the associated bundle

E=(Cx PGL(rg, C)) /1. (6.7)

of the representation p Since multiples of the identity matrix are contained in

P. we can write

Fl.(E) =E/P,. (6.8)

Hence the representation p induces an action of I' on FI,.(E). The double
quotient
C x PGL(rp,C) — E — Fl.(E) (6.9)

can be factorised in two ways. We define the map
#:C x PGL(rg,C)/P, — FI,(E) (6.10)
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by
(z,9P) — (o(L,z),p(T)gP,) € Fl.(E). (6.11)

The map 7 fits into the diagram

~

C x PGL(rp,C) ——— > E

| |

C x PGL(rg,C) /P, —— FI,(E)

and is a locally trivial holomorphic fibration with fibre I', since 7 is. O

6.2 Constant scalar curvature Kahler metrics on

flag bundles and K-polystability

We begin with a proof of Theorem [6.1], then turn to the proof of Lemma [6.3]

Proof of Theorem[6.1] Let G denote the group PGL(rg, C). The Picard group
of Fl,(E) is generated by line bundles of the form £,(A) where A is in P(r)
and A is a line bundle on C' by Lemma [2.29

Fix a line bundle M = £, ® A with A € PicC and A € P(\). Let

7:C x G/P, — Fl,(E) (6.12)

be the projection constructed in Theorem [6.5

There is a Kéhler-Einstein (hence cscK) metric wg in ¢;(£y), unique up
to the action of G, by results of Koszul and Matsushima [2]. Let so be the
(constant) scalar curvature of wy. Let wa be a constant scalar curvature metric
such that 27[wa] = ¢1(A) with scalar curvature s; and let w; be the pullback
to C. Since wy + w; is I-invariant, it descends to a form w on FI,(E) with

constant scalar curvature sg + 7. ]

Let V be a complex vector space of dimension rg. In order to apply a
classical result of Demazure, we regard FI.(V) as a quotient of PGL(r, V).
Let @, be the image of a stabiliser of an r-flag of subspaces in PSL(rg, C)

74



and let g, be its Lie algebra. Also let psl(rg, C) denote the Lie algebra of

PSL(rg, C). We have a well known exact sequence

0 — (PSL(rg, C)xq,)/Q, — PSL(rg, C)/Q, xpsl(rx, C) — Tr, 7y — 0.
(6.13)

where @, acts on g, by the adjoint action and 7Tz, (v is the tangent bundle.
It follows from results of Demazure and Bott [II, Section 4.8] that we have

i psl(rg, C), ifi =0
H (FL,(V), Tri,v)) = ' (6.14)
0, otherwise.

Let p : Fl,(E) — C be the projection. Since FI,.(E) is Zariski locally
trivial on C, this generalises in a straightforward manner. Let h be a hermitian

metric on E and let End®(E) denote the sheaf of trace-free endomorphisms on
E. Let U be a Zariski open set in C' such that

Fl.(E)=2U x Fl.(V). (6.15)
We have a natural identification
(énd*(E)/C) |, = Op|, ®psl(rg, C), (6.16)

where the C denotes the constant sheaf included in End’(E) as multiples of
the identity. Let Vr (g) denote the relative tangent bundle of F1,(F) with
respect to the projection p. We obtain from Equation (6.14)
; End’(E)/C if i = 0 and
R p*V}'lT(E) = (617)
0 otherwise,

Proof of Lemma[6.3 We must show that the vector space H*(FI,(E), T, (r))
is trivial. We have the exact sequence

0 — Vr.5) — Tri,ey — 0 Tc — 0 (6.18)

where 7o is the tangent bundle of the curve C. It suffices to show that
H(F1.(E), Vri,p) = 0 since H(C,7¢) = 0 as the genus g(C') satisfies
g(C) > 1. The vector bundle F is simple, therefore we have H°(C, End(E)) =
C -Idg. The claim follows by identifying H°(C,End’(E)) as a subspace of
H°(C,End(E)). O
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Chapter 7

K-stability of complete

intersections

The objective of this chapter is to provide additional examples of K-unstable
varieties. We describe a situation in which the Donaldson-Futaki invariant of
a complete intersection can be calculated. In Section and apply the result
in the case of flag bundles in Section [7.2]

The idea is to fix a complete intersection X in a polarised variety Y and a
test configuration % for Y. Consider then the Zariski closure of the orbit of X
in ¢ under the G,,-action. The scheme 2 is a test configuration for X and
its Donaldson-Futaki invariant depends, a priori, on the test configuration %
in a complicated way. However, in some favourable situations the Donaldson-
Futaki invariant of 2" is related to the Donaldson-Futaki invariant of %" and
topological data of X in Y. Examples of this behaviour have been given by
Stoppa-Tenni [8I] and Arezzo-Della Vedova [7].

The main result of this chapter is a generalisation of an example in [8T].

Theorem 7.1 (A simple limit for high genus curves). Let E be an ample vector
bundle of rank rg on a curve, and F is a subbundle of E of rank rr. Assume
that

(&, 2) = (Fl.(£7),L)) (7.1)

is a test configuration for (Fl.(E), L)) as defined in Chapter[5, and that X is

in Po(r). Let X be a generic complete intersection in Fl.(E) of codimension
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less than the integer Ny, . defined in Equation (7.9)). Then the Donaldson-
Futaki invariant of the test configuration Z, defined as the closure of the orbit
of X in %, is given by

DF(Z) = D (Crpdeg E + Crdeg F) g + O(g"), (7.2)

where D is a positive number and Cg and Cg are given in Equation (7.28)).
All three numbers depend only on deg E,deg F', the codimension u of X and
A.

We may easily construct examples of K-unstable complete intersections in
flag bundles over curves using Theorem [7.1] The simplest such construction is
due to Stoppa and Tenni.

Fix a positive integer d and let C(g) be a sequence of d-gonal curves of
genus ¢ for all integers ¢ larger than 2, and let L, be a degree d line bundle
on C(g). Let

Fy= Ly and E; = O55™" @ L.

With these choices deg £, and deg F; are bounded as functions of g and the
final term in Equation is under control. The vector bundle E; is only
globally generated but we may find a test configuration for an ample polari-
sation on X whose Donaldson-Futaki invariant is arbitrarily close to the one
given by Equation when applied to the globally generated vector bundle
E,. We do this by replacing the vector bundle F, with E, ®A‘7€|, where A
is an ample line bundle on C(g). Finally, we use the following Lemma which
follows directly from calculations done in Sections and

Lemma 7.2. The Donaldson-Futaki invariant of (#p, Z\(€A)) is continuous

me.

Using Lemma and simple combinatorics outlined in Section we ob-
tain the following new examples of K-unstable varieties.

Theorem 7.3 (Theorem D[) Let Y be the Grassmannian of p-dimensional
quotients of E, with the polarisation L£y(eA), where A\ = (17). Let s be a

positive integer.
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Then there exists numbers eg > 0 and gy > 0 such that a general hypersur-
face H in'Y which is a defined by a section of a multiple of s (Lx(eA)) with
the polarisation E,\(EA)|H is K-unstable for all € < €y and g > go.

We may also ask for H to be smooth in the statement of Theorem by
Bertini’s theorem [43, Theorem I1.8.18].

Proposition 7.4. For s > e the hypersurface H is of general type.

Proof. We prove that Ky is ample. This follows directly from the adjunction
formula [35, Example 3.2.12]. In the notation of Theorem [7.3} we have

Ky = (,C_J + Kc(g) + S,C)\(EA)) (73)

o

where o is the partition (rg?). The statement then follows from Remark

and the preceding discussion. O

7.1 The Donaldson-Futaki invariant of a com-

plete intersection

Let p be G,,-action on a polarised variety (Y, L) of dimension n and let ¢; be
sections of H 0(Y, L%) for 1 < i < u. Let v be an integer, and assume that
the natural representation of p on H°(Y, L%) acts on ; by t.p; = t7%i¢p; for
all ¢ and t € G,,. Denote the complete intersection of ¢1,...,p, by X. The
G-action determines a product test configurations % for (Y, L) and 2" for
(X, L‘ )» since X is invariant under p.

Write the Hilbert and weight functions of % and 2" as

B (k) = aok™ + a k"1 + O(K"?),
wy(k’) = bok’n+1 + blk’n + O(k‘n_l),
h%—(k?) — cok,n—u 4 Cokn—u—l + O(kn—u—2)

and

wx<k?) — dgkn_u+1 —f-Cokn_u + O<kn—u—1)’
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respectively. The following Proposition is a special case of |7, Theorem 4.1].
We present an elementary proof in Section of the Appendix along the lines
of [81].

Proposition 7.5. The Donaldson-Futaki invariant of the test configuration

2 is given by

DF(2) = DF(#) + X1 <(" VS _ ““Y) , (7.4)

n+1—u 2u n

where we have denoted

b - a
I/y:—o, S:ZSi and uy:—l.
Qo i1 Qo
The result of Proposition [7.5] also applies also to test configurations which
are not products. Assume that (#/,.%) is an arbitrary test configuration for

(Y, L). Assume for simplicity that the exponent is 1. Let

R= é Ry, = éH“(Y, L*) (7.5)

be the graded coordinate ring of (Y, L) and let F,R be a graded filtration
corresponding to the test configuration % (cf. Remark [3.15). We have an
induced map

R — Ry =D Ry/Fo, 1Ry, (7.6)
k=0

where nj is the smallest integer such that F, R, = Rj, which is finite by
condition (iii) of Remark[3.15] Let I, be the ideal generated by @, Fr—1Rx-
Define the subscheme of least weight of the test configuration % to be the
subscheme of Y determined by R/L,.

The limit of the subscheme of least weight is fixed under the G,, action over
the central fibre. Slightly more generally, the following lemma follows directly

from the definition of the scheme Y.

Lemma 7.6. The closure of the orbit of the subscheme of least weight Y, in
% is isomorphic to Y, x A' as (quasi-projective) polarised varieties. Moreover,
the lifting of the G,,-action on A' to Y, x At is trivial with a possibly nontrivial
linearisation.
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Proof. Let %, denote the closure of Y, under the G,,-action. Consider the
linear map

o 1o @ B/ R 7.7

kG_BO Gj S (7.7)

defined by the projection Ry — Ry/F,,-1Rr and J is generated by all the

elements which lie in @ZOZO F,,—1Ry. It is straightforward to see that ® is a

homomorphism of graded rings whose kernel is exactly the ideal I.,. Finally, the

scheme % is isomorphic to the product Y, x A! since it is the projectivisation
of the ring

Rees FuR/ J, (7.8)

where J is the ideal generated by (@' F;R)t". The statement about the
action follows since the G,,-action simply scales any graded component of its

coordinate ring with weight —n;. O

Example 7.7. If the filtration F,R is the slope filtration from Remark |8.34]
then the subscheme of least weight recovers the subscheme associated to the
ideal .# C Op, in the notation of Remark |8.34]

By a generic hypersurface or complete intersection, we mean one which is

contained in a dense open set of the corresponding Hilbert scheme.

Lemma 7.8. Let the dimension of the subscheme Y., be greater than or equal to
u. Then a generic complete intersections of codimension u on'Y degenerates to
a complete intersection on the central fibre. Moreover, if ¢ is a generic section
of HY(Y, L®), then the limit of ¢ has weight —ng in the G,,-representation on
HO(%%, ).

Proof. Let Z be a complete intersection in Y of codimension no larger than
u. We can identify not just Y,, but Z NY,, which is generically a proper
intersection, with its limit in the central fibre of %". The locus V in the Hilbert
scheme of complete intersections of the same topological type as Z, whose the
intersection with Y, is not complete intersection, is determined by any finite
set of generators of the ideal of Y, in Y. By the assumption on the codimension
of Z, the locus V is a proper closed subset. Hence the locus where the limit is
not a complete intersection is also a proper closed subset. The second claim

follows from the definition of the G,,-action. O
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A nontrivial example where the above results can be applied is given in the

following section.

7.2 Complete intersections in flag varieties

In this section we apply the results of Section|7.1|to flag bundles. Fix a smooth
projective variety (B, L), a line bundle A on B and a flag bundle Y = FI,.(E)
with an ample underlying vector bundle E of rank rg. Let Y be polarised by
its relative canonical bundle £,. Fix a subsheaf F C FE of rank rr and let
(%', Z\(L)) be the test configuration of (Y, £,(L)) induced by the degeneration
of the vector bundle E into a direct sum F @ E//F defined in Section [5.1] We
also denote ¢ = rank E/F.

Lemma 7.9. The relative dimension of the least weight subscheme in the cen-
tral fibre F1,.(E7)g is given by

[\

p— c
Nivpre = Ti(rigr — 7)) +rp-1(q — 1p-1) + Z(T’z —q)(rig1 — i), (7.9)

1 1=p

7

where r = (0,71,...,7,7g) and
p=min{a:e>a> 1,1, >rg— [} (7.10)

Proof. We will describe the filtration corresponding to the test configuration
Fl1,.(£7) in detail in Section [8.6] However, it suffices to see that the subscheme
fixed by the G,,-action on the central fibre is the intersection of Fi,(E7) with

the subscheme

p— c

1 ¢
[TeN E/F) < [N E/Fe N "By c [[RN E)  (7.11)
i=1 j=p k=1

The dimension of the locus of k-planes containing a fixed g-dimensional vector
space in a Grassmannian of k-planes in an [-dimensional vector space is (k —
q)(l — k). The dimension in Equation (7.9)) is then calculated by considering
the flag bundle as an iterated fibration of Grassmannians and using elementary

geometric considerations. 0
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Lemma 7.10. Let A be an element of P(r). The lowest weight vy of the G,,-

action on sections of Ly s given by

v = Zsi max{(r; — q),0}, (7.12)

where S.—; = \i — X\i—1 for i € r and p was defined in Equation (7.10)).

Proof. Recall that the bundle £, is the restriction of the line bundle @¢_; Op(rri £)(s:)-
By Borel-Weil (cf. Equation [2.45)) the sections of lowest weight over the central
fibre of % are sections of

p—1

Qs N E/Pe@s (N e/Fa N F). (7.13)

i=1

The statement of the Lemma follows by the definition of the action, which
scales fibres of F by weight 1 and fixes the complement E/F. O

For any tuple of sections

q
©=(¢1.-- - 0u) € [ IsiLa(A)] (7.14)
i=1
we write
Xy, =2Z(p1) N ... N Z(pu) (7.15)

for their intersection. Let 2 be the Zariski closure of the orbit of X under the
G,,-action inside %. Let F be a torsion free, saturated coherent subsheaf of F

and assume that the sections ¢; are generic and that u < N, We are now

rETE-
in the situation of Lemma [7.8 and hence of Proposition [7.5] with the weight ~
given by Lemma We take the polarisation on X, to be the restriction
Ly(A).

We now revert to the notation of Sections and where by, by, ag
and a; are the coefficients of the two highest degree terms of polynomials
X(FL(E), LA(A)*)/ rank E* and x(B, E* ® A*)/rank E**, respectively. Re-
call that sections of E¥* correspond to sections of £y(A)* and the highest order
terms of the polynomial X(B,E“ ® A¥) and the weight polynomial w(k) of

(%, £\(A)) agree.
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Proposition 7.11. Let o be the canonical partition o, , (cf. Definition [4.1]).
The difference
A =DF(%)—-DF(Z) (7.16)

is positive for the polarisation L, if the base B is a curve. If the dimension
dime B is arbitrary, then A is positive when the polarisation is taken to be
Ly(L™) on Fl.(E) for m > 0.

Remark 7.12. If B is a curve, F is ample and semistable, then the complete
intersection X, polarised by the restriction of the bundle £, is not destabilised
by test conﬁglzrations induced from extensions of E.

If B is an arbitrary polarised manifold, the same statement is true for
complete intersections of sections of L,(L™)®% 1 < i < u, for m > 0. Tt
would be more interesting, although much harder, to study the asymptotics of

test configurations of a fixed complete intersection as m goes to infinity.

Proof of Proposition|7.11. Indeed we have

b
= _y>0 (7.17)
Qo

with equality only in the case of the action scaling every section with the same

weight. The above inequality is equivalent to

. wy(k)
> 1
NS R (7.18)

where hY.(k) is Hilbert polynomial of £,(A) and w(k) its equivariant analogue.
Write
w(k) = idim V", (7.19)

where Vi(k) is the ith weight subspace of the representation of G,, on H(B, E*®
AF¥). By definition of v, we have

wy (k) > >y dim V¥ = ykn3 (k). (7.20)

It suffices to show that we have the inequality

n(n+1)

5 > Hy (7.21)
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We have
Hy = Hf + Hrel, (722>

where pg is the slope of a fibre defined by

rank E* = D, (kN 4 pek™ et + O(kNrer=2)) (7.23)
for some rational number D,, and jiq = Z—(l) By the choice of polarisation

we have ye = Nrpr The other term ol 1s obtained from Riemann-Roch. In
M 2 M

the case dim B = 1 the inequality ([7.21]) is clear. Consider the line bundle
L,(L™). Then by Equation ((5.45)) we have

bdeg Kp

o Tyt -2 24
2deng +O(m™7), (7.24)

Hrel =

so there is an mg > 0 such that the inequality (7.21]) holds for m > my. O

In light of Proposition [7.11] we suspect that one has to start with an
unstable vector bundle E in order to find K-unstable examples of complete
intersections for some choices of the parameters E, F, B and s;. We conclude
with the proof of Theorem [7.1] and explain how Theorem [7.3] follows from
Theorem [7.1]

Proof of Theorem[7.1 By Lemma [7.8, Lemma [7.9) and Lemma [7.10] we are in

situation of Proposition[7.5] so the rest of the proof reduces to a straightforward
calculation. Recall from Chapter [5| that we have

ho(Nre(repe + pr) | co(Nre(repe — pr)

bo =

rp(rp + 1) re(re—1) 7
by = HyAs(E) + 1 (M) (ME + :—Z(l - 9)) :
ap = c1(A)ur,
and
ap=1-gy,
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where ¢;(\) denotes the ith elementary symmetric polynomial of A = (A, ..., \.).

After some algebraic manipulation we can write DF(2") = C'g + O(g°) where

C= D(hg()\)(n F 1) (n — wrere(us — pr) — yuer(N s (7.25)
— (A ’re(re + Drp (R* +n— nu— rgu)ug — (n+ 1)(n — w)ur)) )
(7.26)

where n = N, , + 1 and D = (rg*(rg® — I)n(n+ 1 — u))_l. Alternatively we
can write

DF(2) = D (Cgdeg E + Crdeg F) g + O(g°), (7.27)

where we have denoted

Cp = (r5? — Ducr(\) (reer(\) — r5y) — :—ZCF (7.28)

and
Cr=(Nypr+1)(Nypr —u) ((TE +1Dey(N)? — 27’Eh2()\)) ) (7.29)
]

Proof of Theorem[7.3 In the situation of Theorem [7.3]we have deg E = deg F.
Computing the sign of the sum Cg + Cr amounts to solving a polynomial
inequality in e, A, f and u. Let p be an integer between 1 and e — 1. Since we
are assuming e — f > p, we also have v = 0 by Lemma [7.10] Then there exist
positive constants D’ and D" such that

D'(Cp+Cr)=D"(u—1)
—(rg—rp)re —p—1)(rg —p)(re —p+1)(p—L)p(p+ 1)
—’I“E(TE—1)(7”E—|—1)(7’E—T‘F—p)p.
(7.30)

Hence assuming u = 1 implies immediately that Cr + Cr < 0 so the test
configuration induced from (%,.%¢) as described on page . The code for
repeating the calculations and for simulating more examples is contained in

[47, Futaki invariants of complete intersections]. [
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Remark 7.13. While the inequality Cz + Cr < 0 seems to hold more generally

we only know how to prove it in the Grassmannian case.

Example 7.14 (Projective bundles). Equation ([7.25)) gets a very nice form for
projective bundles. In the notation used in the proof of Theorem [7.1], letting
A= (1) gives

re —yu)deg B — (rg —u) deg F’
re(rg + 1 —u)

DF(2) = << >g+0(go). (7.31)

This is the example given by Stoppa-Tenni [8I]. Note that the convention the

authors use for PFE is dual to ours.
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Chapter 8
Filtrations and relative K-stability

The K-stability of a projective variety with the structure of a projective family
over a base scheme is in certain cases conjecturally characterised in terms of
two types of simple test configurations. On the one hand one can look at
test configurations which are equivariant with respect to the projection to the
base, and on the other hand one can pull back test configurations from the
base. Partial results are known in the case of toric bundles [5], projective
bundles [68], blowups [8, 76, [68] and flag bundles (Chapters [f] and [6). We
define the notion of relative K-stability, which is a conjectural refinement of
K-stability, defined in Chapter [3] Given a projective morphism p: Y — B
a relative test configuration is a projective morphism # — B x A!, with a
G,-action inducing a test configuration on each fibre of p.

We introduce and study filtrations of graded coherent sheaves of algebras in
Section with the aim of generalising the Witt-Nystrom-Székelyhidi theory
of filtrations in the study of K-stability [89, 85] to the context of relative K-
stability. We show how this relates to Székelyhidi’s notion of K-stability (see
Remark in Section The motivation for studying filtrations of sheaves
is that it allows us to give a unified treatment of several constructions that
have appeared in the theory of K-stability, as well as constructions which we
believe to be new. Related work was done by Ross and Thomas [69].

In Section [8.3, we propose an algebraic solution to the problem of inter-
polating test configurations, which was solved analytically in [71]. This is an
application of the constructions defined in Section and Section Our
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approach works when the test configurations are defined for different polarisa-
tions as well. As an application, we prove that the K-unstable locus in V(X)) is
open in the Euclidean topology. The behaviour of convex transforms as well as
further examples of the interpolation construction are studied in Section
In Section we apply the constructions to give a natural definition of
pulling back test configurations from the base scheme B. We also give an
overview where test configurations of this type have appeared in the literature.
Finally, we discuss natural filtrations of the coordinate algebras of flag bundles

from the new point of view in Section [8.6]

Remark 8.1 (A note on terminology). Throughout this chapter the word rela-
tive refers to working over a base scheme, not to be confused with the stability

notion used in the extremal YTD correspondence.

Remark 8.2. As far as we know, apart from Theorem and Proposition
8.30| (Theorem , the content of this Chapter is new even when working over
Spec C.

8.1 Filtrations and projective families

By convention, our algebras are Z%,-graded. Let B be a scheme over the

complex numbers. If A is a graded sheaf of Og-algebras, we assume that

AO - OB-

Definition 8.3 (Admissible filtrations). Let

A= éAk (8.1)

be a sheaf of quasicoherent graded Op-algebras over a scheme B. Then an

admissible filtration of A is a filtration of coherent subsheaves
Fo:0=F_  ACOg=FACFAC---CA, (8.2)
such that it is

(1) multiplicative, the filtration satisfies the relation (F;A) (F;A) C Fiy A,
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(ii) homogeneous, if U is an open set in B, the homogeneous parts of any

section of F;A(U) are all in F; A(U), and
(iii) exhaustive, it satisfies (J;-, F;.A = A.

Remark 8.4. The property Fy A = Op can be replaced by saying that a filtra-
tion

...CEAcﬂ+1Ac... (83)

is discrete, meaning that F; A = Op for some j. Any such filtration can be
uniquely reindexed as an admissible filtration.

There is another equivalent convention for defining an admissible filtration
by reversing the order of the filtration. Codogni and Dervan described the
process of translating between the two points of view in [2I] in the nonrelative
case. We work with increasing filtration as a matter of convenience while

developing the theory.
Definition 8.5. Let FAlg,, = denote the category of pairs (A, F,.A) such that

(i) A is a graded coherent Op-algebra, which is locally finitely generated
over Op and

(ii) F,.A is an admissible filtration.

The morphisms are grading and filtration preserving homomorphisms. We
refer to the objects admissibly filtered graded Og-algebras and often simply
refer to them by the symbol F,A.

Definition 8.6. Let f: A — B be an surjection of graded Og-modules and
f; is the restriction of f to the subsheaf F; A. We define the image filtration

Definition 8.7. Let g : A — B be a morphism of graded filtered Opg-algebras
and let G,B be a filtration of B. We define the induced filtration (f*G), A by

(f'G),A=ANGB={ac A: fla) € G:B}. (8.5)
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Remark 8.8. If f is an isomorphism, these two constructions are clearly inverse

to one another, that is we have identities
foffGeA =G, A (8.6)

and

Definition 8.9. Let £ be a sheaf of Og-modules and let H; A € FAlg, . We
define the derived filtration [15], also denoted by H,E, by

HE = (H;A)E. (8.8)

Lemma 8.10. Let f: A — B be a (grading-preserving) morphism of filtered
graded sheaves of Op-algebras. Then the image filtration and induced filtration,
when defined, are admissible filtrations in the sense of Definition [8.3.

Proof. We verify the conditions in Definition starting with the image fil-
tration. Fix a filtered algebra F, A € FAlg, . To show (i), let s; and s;
be sections of f.F;A and f.F;A over U C B, respectively. Then making U
smaller if necessary, we have elements ¢; and ¢; in F; A(U) and F;A(U), respec-
tively, such that f(¢;) = s; and f(t;) = s;. The section ¢;t; is in Fi;A(U), so
f(tit;) is in (foF)i+;A(U). Homogeneity and exhaustivity follow easily since
f preserves the grading and is a surjective map of sheaves.

The induced case is similar. To check multiplicativity, let s; € ¢*G;B(U)
and s; € ¢*G;B(U). Since G,B is admissible and ¢ is a homomorphism,
we have g(s;s;) € Gi;B(U) and hence s;s; € g*Gi+;(U). Homogeneity and

exhaustivity are again trivial, since the map g preserves the grading. ]

Tensor algebras of filtered modules are naturally endowed with an admis-
sible filtration.

Definition 8.11 (The tensor algebra of a filtered module). Let
FE:0=F,CREC---CEE=E (8.9)

be a filtered sheaf of Op-modules. The tensor algebra of £ is naturally a
filtered algebra by setting

GTE) =0 P F.lo---aFE (8.10)

k=1 i1+4-+ip=p
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for p € Z~y.
Lemma 8.12. The filtration defined in Equation (8.10)) is admissible.
Proof. Follows directly from the definitions. n

Definition 8.13 (Tensor products of filtered algebras). Let F,.A and G,B be
filtered sheaves of graded Og-algebras. Define the tensor product

(Fe®G.), (A®o, B) = P FiA®o, G;B, (8.11)

i+j=p
which is a filtered Z?-graded sheaf of coherent Op-algebras.

Lemma 8.14. Tensor products of filtered algebras are commutative and asso-

ciative.

Definition 8.15. The Veronese subalgebra A is defined as the subalgebra,

Ay = P Aa- (8.12)
k=0
Similarly, if C is a Zgo—graded sheaf of algebras, define the a = (ay,...,an)-
diagonal
Co = P Clrar....tan)- (8.13)
k=0

Definition 8.16 (Diagonal subalgebras). Let F,. A and G,B be filtered sheaves
of graded Op-algebras. For any pair (a,b) of nonnegative integers, we define

the (a, b)-diagonal product of the two filtered algebras by
(Fe ®ap) Go) (AR B) = (A0, B) 1y N (Fe@G.), (AR0, B).  (8.14)

We refer to this filtration the (a,b)-diagonal product of two filtered algebras.
Define weighted diagonal products of any finite collections of filtered sheaves

of algebras similarly.
Lemma 8.17. The diagonal product is a well-defined operation on FAlg,, ..

Proof. This is a straightforward verification. ]
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Definition 8.18 (Filtrations generated at degree 1). Let F,E be a filtered
sheaf of Og-modules and A a graded sheaf of Og-algebras such that A; = &.
We say that the algebra A is generated at degree 1 so that there is a surjective
morphism

p: S(E) — A. (8.15)

Let F,S(E) be the filtration on S(&) induced by the filtration on T'(E) defined
in Definition Define the filtration G4 A of A generated by F,E to be the
image filtration p, F,.A.

Lemma 8.19. A filtration generated at degree 1 is admissible.
Proof. Follows from Lemma [8.10] and Lemma [8.12] O

Definition 8.20. We define the Rees algebra and the associated graded alge-
bra of F, A as

(i) Rees(FyA) = ®iso( LA C Alt],
(i) gr(FeA) = @izo(F1A)/(Fi-1A),

respectively. We say that a filtration F,.A is finitely generated if Rees(F,.A)
is locally finitely generated as an Opg-algebra. Note that both objects are
bigraded. We refer to the two gradings by the A-grading and the t-grading.

Lemma 8.21. Let f: A — B be a morphism of graded sheaves of Og-algebras.
The tensor product preserves finite generation of admissible filtrations. If we
assume the homomorphism f is surjective, the same is true for the image
filtration. Similarly, if the homomorphism f is injective, the induced filtration

18 finitely generated.

Proof. This can be easily seen by relating the Rees algebras. Let F, and G,
be filtrations for A and B, respectively, and f: A — B is a map preserving the

grading. Then we have natural morphisms
Rees(Fo A) — Rees(f.FoBB) (8.16)

and

Rees(f*GeA) = Rees(GoB) (8.17)
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which preserve the grading. The claims for pushforwards and pullbacks then
follow easily. Note that we must assume that f is a surjection in the pushfor-

ward case. In the tensor product case we have a natural isomorphism
Rees (FoA®p, GoB) = Rees(FoA) @cy Rees(GoB) C (A® B)[t]  (8.18)

which immediately implies the claim. O]

Remark 8.22 (Filtrations of coordinate rings). Let (B, L) be a projective scheme
and denote R = @@, , H(B, L*). Definition contains the special case of
admissible filtrations as defined [85] in of R by taking the base to be a point.

8.2 Relative K-stability

In this section we define relative test configurations and describe their rela-
tionship to admissible filtrations discussed in Section

Fix a projective scheme B of dimension b with an ample line bundle L and
a locally finitely generated graded sheaf of Og-algebras A. Denote the relative
projectivisation of A by Y = Projgz(A) with the projection p: Y — B. We
assume that A is locally finitely generated at degree 1, which means that there

exists a surjective homomorphism
S(A;) - A (8.19)

and hence an embedding
Projp A— PA,. (8.20)

Definition 8.23. Define the graded algebra of sections of L by
R, =P H (B, L¥) (8.21)
k=0

and the associated graded sheaf of algebras by

R =" (8.22)
k=0
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Proposition 8.24. The Rees algebra of a graded sheaf of coherent Ox -algebras
Rees(F,A) = @ FL At (8.23)
k=0

18 a flat sheaf of graded Oy:1-algebras.

Proof. The claim is local on B. The Rees algebra of a k[t]-module is torsion
free as a k[t]-algebra. A well known flatness criterion states that a module
over a principal ideal domain is flat if and only if it is torsion free [31I, Section
6.3]. O

We say that A is ample if the O(d)-line bundle on Y defines an embedding

for some positive integer d. If this is true for d = 1, A is very ample.

Definition 8.25. Let Y be a scheme, p: Y — B a projective morphism and
L a p-ample line bundle. A relative test configuration, or p-test configuration
(%, %, p) for the pair (Y, L) is defined by

e a flat morphism f: % — A! which factors through B x Al, along with
an isomorphism ¢, : f~1H{1} 2V,

e an f-ample line bundle .Z on % such that %, such that the isomorphism
over the fibre f~'{1} identifies the line bundles .%; and L.

e an algebraic action p : G,, x % — % which makes the projection to B X
A! equivariant with respect to the trivial action on B and the standard
action on A!, together with a .#-linearisation action on % that covers

the usual action on Al

The integer r is called the exponent of the p-test configuration. The fibre
f7H0} is called the central fibre. If . is ample, a p-test configuration is a
test configuration in the sense of Definition [3.1] in which case we say that &%

is an ample p-test configuration.

Theorem 8.26. A finitely generated admissible filtration F, A determines a

p-test configuration

(Proj gua Rees FoA, O(1)) (8.24)

with its natural G,,-action. Conversely, a p-relative test configuration (%', L)

of Projg A determines a finitely generated admissible filtration G4.A.
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Proof. Let the group G,,, act with its natural action on the line A and extend
it trivially to the product B x Al. There is a natural linearisation of this action
on the sheaf Rees F, A with the following local description. Let U be an open
set in B such that the projection p}U corresponds to a graded Ag-algebra A,
where Aq is the coordinate ring of B over U. The filtration F, A restricts to

an admissible filtration F,A. Then we have a commutative diagram

Rees F, A~ Rees F, A[s*!]

T

Aolt] — 1= 4 At 57

with obvious notation. This defines a G,,,-linearisation on A over U compatible
with the grading. The morphisms py glue as U ranges over an open cover of
B to determine a G,,-scheme (Proj g, 41 Rees Fo A, O(1)) with an equivariant
projection down to B x A!. The projection to A! is flat by Proposition M

and the central fibre is isomorphic to
Projg gr(F.A) (8.25)

with a G,,-action defined by the t-grading.
Given a p-test configuration (%, %), we produce an admissible filtration
as follows. By replacing .Z with a power if necessary, we may assume that we

have an embedding

LY — Py 7, (8.26)
where g is the projection " — BxA!. Using the identification (%, X}Bx{l}) =
(Y, £) we obtain a natural map

oo @k
A — Do (o) (8.27)
k=0

which we may take to be an isomorphism by |75, Lemma 29.14.4].
For any sufficiently small affine neighborhood U = Spec Ay C B, we have
a diagram
971U & Profip s, S~ P 105
x l

Spec Ay

95



where S is a graded Agp-algebra. Since the projection g is equivariant for the
trivial action on U, the linearisation of the G-action determines a representa-
tion on A;. This determines a splitting A; = @);_, W; by weight. We obtain a
presheaf of filtered Og-modules as U ranges over sufficiently small affine open
sets of B. The associated sheaf generates an admissible filtration G,A of A
by Lemma [8.19] O]

Remark 8.27. If B = Spec C, this theorem was proved by [85].

If X =Y = B, L is an ample line bundle on X and p is the identity
morphism, this theorem reduces to the blowing up formalism due to Mumford
[61], Ross and Thomas [69] and Odaka [64]. Up to passing to a Veronese
subalgebra, any finitely generated admissible filtration of the algebra R, can

be obtained from a filtration
I, C---CIyCOyx. (828)

See Remark [R.34] for an outline of this construction.

Given an admissible filtration F; A we define the associated Hilbert, weight

and trace squared functions by

R FiA:

and

o F Ay >
d(k) = g *x | B, ,
. i=1 Z X< Fi1 Ak

respectively. If the p-test configuration given by Theorem [8.26] is ample, the
functions h(k), w(k) and d(k) are equal to the functions defined in Lemma
.4l In this case the Donaldson-Futaki invariant is defined normally by Equa-
tion (|3.4]).

Definition 8.28 (Relative K-stability). Let Testp(Y, L) be the set of p-test
configurations of (Y, L). We define K-stability relative to p in the same way we
defined K-stability in Definition but by restricting the set of test configu-

rations to ones which lie in Testg(Y, L).
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Definition 8.29. Consider the equivalence relation on the set of p-test con-

figurations generated by the following three relations.

(i) Identify a p-test configuration % with any test configuration with which

it is G,,-equivariantly isomorphic.

(ii) Identify any rescaling of the G,,-action on (#/,.Z) (pullback by a cover
of A!, cf. Remark .

(iii) Identify any pair (#,.%¢) and (%, £?) of p-test configurations for all
d>1.

Following Odaka [65] we call equivalence classes under the above identifica-
tions p-test classes for test configurations. Test configurations up to the first
two relations are called p-test degenerations. Note that we will use the same
terminology for arbitrary filtrations later, see Definition [8.36]

Proposition 8.30 (Theorem [E)). The two constructions in Theorem [8.26 in-
duce a 1-1 correspondence between finitely generated filtrations of A up to

isomorphism and Veronese subalgebras, and p-test classes of (Y, L).

Proof. 1t suffices to show that the two constructions are inverses to one another
up to the stated identifications.

An automorphism ¢ of a filtered algebra F,.A induces an automorphism of
the Rees algebra, and hence of its projectivisation. Conversely, any equivariant
isomorphism which preserves linearisations clearly produces an automorphism
of the filtered algebra.

Similarly, the admissibility criterion uniquely fixes the scale of the action,
while the final identification corresponds to identifying Veronese subalgebras
of F,A. This completes the proof. H

We extend the notion of ampleness to admissible filtrations through am-

pleness of their finitely generated approximations.

Definition 8.31 (Ampleness for filtrations). Let F,.A be the filtered algebra
and define the filtrations FL¥ A for all k € N to be the filtrations of Ay
generated by the filtration FoA;. We say that an element of FAlg,, = is ample

if the sequence of filtrations F A determine p-ample test configurations for
all £ € N.
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Definition 8.32. For any line bundle A on B, define the twisted polarisation
L(A)=L@p"A. (8.29)

We abuse notation by denoting the twisted polarisation on any test config-

uration of Y similarly.

Lemma 8.33. Let (%,.%) be a p-test configuration for (Y, L) and let L be an
ample line bundle on B. Then (%, £ (L™)) is ample for m > 0.

Proof. Tt suffices to check ampleness over the central fibre B x {0}, over which
the line bundle .Z(L™) restricts to F(L™) for some relatively ample line bundle
F by construction. This is ample by [43 Proposition I1.7.10]. O

We close the section on a brief discussion of slope stability which provides

a case where amplitude has been studied in detail in Ross and Thomas [68].

Remark 8.34 (Slope stability). Let ¢ : B’ C B is a subscheme. We define a
filtration of R by vanishing orders along B’. Denote the ideal sheaf of B’ by

S5 and consider the filtration
GJL*: #'L*c s 'L c--- L C L° (8.30)

for any pair of natural numbers a and b. Assume from now on that a and b
are coprime. The tensor algebra generated by GoL® (cf. Definition is
admissibly filtered by Lemma [8.12]
For example, if a = b =1 we write
OpCcILe I Sl I L a-
CcCLe I S e S e
ClLoLl’eILlPa L'

CR=LoL*®oLl’pL*®---

It is easy to pick out the filtration from the increasing sequence of upper

triangular subsets starting from the top left corner starting with
Op C(Op®IL)C (Op®LDI?L?) C---. (8.31)
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We denote the associated p-test configuration by 2. for ¢ = 3. If we assume
that ¢ < Sesh(B’, L), where

Sesh(B', L) = sup {c € Qs¢: L" ® Z5 is globally generated for r > 0},
(8.32)
then the p-test configuration 2, is ample (up to an equivariant contraction
in the case ¢ = Sesh(B’, L)). This fact is due to Ross and Thomas, who also
found a beautiful formula for the Donaldson-Futaki invariant in this case in
terms of the slope of the triple (B, L, )] [68].

More complicated filtrations of the structure sheaf also yield admissible
filtrations in a similar manner. Conversely, let F, R be an admissible filtration
which is generated in degree 1. Let N be the smallest integer such that Fy L =
L. For any 1 <17 < N, we can define the ideal sheaf .#; C Ox to be the ideal
sheaf locally generated by sections of the subsheaf F;L. We obtain a filtration

0Cc A C---C Iy COx. (8.33)

An alternative construction of the ideal sheaves .7, starting with an arbitrary
test configuration, can be found in Odaka [64, Proposition 3.10] or Ross and
Thomas [69].

8.3 Convex combinations of test configurations

The aim of this section is to define a convex structure on equivalence classes
of test configurations. The idea is very simple and is based on Segre products

of filtered coordinate algebras. Consider the following example.

Example 8.35 (A description of the convex combination of test configurations
when the base B is a point). Let V and W be complex vector spaces and let X
be a projective variety with two embeddings ¢;: X C P(V) and 15: X C P(W).
Fix two 1-parameter subgroups of SL(V') and SL(WW), which determine actions

a:P(V) x G — P(V)

'Proposition is proved using this formula.
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and
g :PW) x G, - P(W),

respectively, and fix two positive integers a and b. Then we have closed im-
mersions

X 5 X x X = P(SV @ SPW) (8.34)

and an associated family
X X G 2 X x X x Gy, C P(SV @ S'W) x Gy, (8.35)

Here the G,,-action on S?V ® S*W is induced from a: t — o, and B: t — B
by setting

(0, 8)i(1 @ RV, QW @+ @wy) = (1 @+ R Ay, ® Brwy @ - -+ ® Bywy).

(8.36)
We define the weighted product test configuration to be the Zariski closure of
the image of the diagonal in Equation (8.35)). This is clearly a test configuration
for (X, L¢® L%), where L; and Ly are the two restrictions of the hyperplane
bundle under the embeddings ¢; and ¢y, respectively.

We write the resulting test configuration additively as
ala] + b[B], (8.37)

where the brackets denote taking the product test configuration associated to
the G,,-action under the respective embeddings of X into projective space.
The test class determined by Equation (8.35|) (cf. Definition and Remark
can be written as

(1 —t)[a] +t[3], (8.38)

b

where the parameter ¢ is taken to be .
a+b

From now on, we identify the set of p-test configurations of Y with the
set of admissibly filtered algebras F,.A which satisfy Projz A =Y and whose
filtration F,.A is finitely generated by Theorem[8.26] This justifies the following
definition, modelled after Odaka [65].
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Definition 8.36 (Test degenerations and test classes). Let p: Y — B be a
projective morphism of normal schemes. Define the set of p-test degenerations
of Y to be the set Testp(Y) of admissibly filtered elements F,. A € FAlg,
such that Projgz A =Y considered up to isomorphisms.

Also define the set Wp(}/) of p-test classes by additionally identifying

Veronese subalgebras in Test,(Y). We have a natural map
Test,(Y) — Test,(Y). (8.39)

If we wish to fix a relatively ample line bundle £ on Y (respectively, a ray
of relatively ample line bundles), we write Test,(Y, L) (resp. Test,(Y, L)) for
clements of Test,(Y) (resp. Test,(Y)) which define a test degenerations (resp.
test classes) for (Y, L).

We denote Testgpecc(B) = Test(B).

We now state and prove Theorem . Let Iy denote the unit interval [0, 1]NQ
and let Ay_; be the N—1 dimensional simplex in QV defined by t;+. . .+ty = 1
and t; >0fori=1,..., N.

Theorem 8.37 (Convex combinations of test configurations). For any N €

L9, there exists a map
Convy: Test, (V)N x Ay_y — Test,(Y) (8.40)
satisfying

(i) Convy (1,e;) = 7;, where e; is the ith unit vector and 7 = (11,...,7Tn)

are p-test configurations of (Y, L;),

(i) Convy(r,t) is an element of Test, (Y, L:), where L; is the line bundle
Zi]\il tzﬁz, and

(#i) if we take B = SpecC and assume that 7; are finitely generated, the
Donaldson-Futaki invariant of Convy(7,t) is continuous in the second

variable.

Theorem 8.38 (Theorem [G]). The K-unstable locus in V(X) (cf. Equation
(13.6) ) is open in the Euclidean topology.
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Proof. Fix a basis Ly,..., Ly of the Picard group of X and let L be a K-
unstable polarisation. Fix a test configuration 2~ for (X, L) with negative
Donaldson-Futaki invariant. Let ¢ be a point in I, s =1 — Zfil t; and let U
be a neighbourhood of 0 in 1§ such that (1 —s)L + SV t;L; is ample for all
teu.

For any t € U, define the test class [2;] = (1 —s)[2] + Y., t:[Z;], where
Z; are trivial test configurations for (X, L;). By Theorem [8.37, there is an
open neighbourhood V' C U of 0 such that DF(.2}) is negative for all t € V.
The set V' determines an open neighbourhood of L in Amp(X) of K-unstable
polarisations. Since L was an arbitrary K-unstable polarisation, this completes
the proof. O

Remark 8.39. It makes sense to extend the definition of the Donaldson-Futaki
invariant of a weighted product (1 — ¢)m + t7» for irrational values of t by

continuity.

For simplicity of exposition we restrict to the case a pairwise convex com-
bination. The proof of the general case of Theorem follows the same
argument with minor adjustments which are outlined in Remark and Re-
mark [8.46]

Recall first a basic algebraic fact.

Lemma 8.40. Let f: S — T be homomorphism of commutative rings and let
A and B be T-algebras. Let As and Bgs be the S-algebras determined by the

map f. Then there is a natural surjective homomorphism
g: AS®SBS—>A®TB. (841)

Proof. The tensor product Ag®g Bg is a quotient of A®z; B by the ideal
generated by elements f(s)a®b—a® f(s)b for s €S, a € A and b € B. This
ideal is contained in the ideal of A®; B in A®yz B, hence identifying both
algebras in Equation (8.41]) as quotients of A ®y B yields the claim. m

Lemma 8.41 (|53, Example 1.2.22|). Let Ly and Ly be ample line bundles on

a projective scheme X. Then the natural map
H(X,L{)®c H'(X, L}) — H°(X, LY ® LY) (8.42)

1s surjective for a,b > 0.
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Corollary 8.42. Let L, and Ly be p-ample line bundles on Y. Then the
natural map
LS Do, DL — Py (L"f Roy Cg) (8.43)

is surjective for a,b > 0.

Proof. By [43, Corollary 12.9] we may assume that the pushforwards p,Lf,
p L5 and p.(L$® LY) are vector bundles on B. It suffices to check that the
map in Equation (8.43)) is surjective on fibres, which follows from [8.41} O

Let (a,b) be a pair of nonnegative integers and Fy. A and G, two elements

of FAlg, . with chosen isomorphisms
Projp A=Y and ProjgB Y. (8.44)

Write R4 and Rp for the graded algebras associated to the two Serre line

bundles. We have natural morphisms
A—=p, Ry and B — p.Rg. (8.45)

By [75, Lemma 29.14.4|, there exists a ko > 0 such that the maps in Equa-
tion (§8.45)) are isomorphisms in degrees larger than ky. Therefore the map

0: AR, B — DR ARo, PR (8.46)

is an isomorphism in degrees larger than kj. Using the isomorphisms in Equa-
tion (8.44)) and Corollary |8.42, we obtain a surjective morphism

¢ 1 A) @0, By — P (Ra) () @0y (R8) 1)) (8.47)

for a,b > k.
We will from now on use a mix of additive and multiplicative notation for

both test degenerations and line bundles.

Definition 8.43. For any nonnegative integers a and b we define the weighted

product of two test degenerations

a[F. Al + b[G.B] (8.48)
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to be given by the filtration
@*(Fo ®(ma,mb) Go)(A ®OB 8)7 (849)

where ¢, denotes taking the image filtration defined in Definition [8.6|and m is
chosen to be the smallest integer so that the statement of Corollary [8.42 and

surjectivity of Equation (8.45]) hold.

Theorem 8.44. If 7y and 15 are p-test degenerations for the relatively ample
line bundles L1 and Lo, the diagonal product determines a p-test configuration

for each polarisation on the line segment between L1 and Ly in the cone V(Y')

of polarisations (cf. Equation (3.6)).
Proof. This follows from Lemma and the fact that we have

(ijB EBr. (ciF @ L) ,0(1)) ~ (Y, L{* @ LY) . (8.50)

k=0
[l

Remark 8.45 (Diagonals in finite products of algebras). Diagonal products
make sense for products of three or more elements of FAlg, . First of all,
Lemma and Corollary [B.42] generalise to finite products of line bundles
of the form L' ® ---® L3 by an easy induction. This avoids the difficulty
of having to make a choice of integer m in the construction of the convex
combinations of test configurations several times.

In particular, if F, A, G,B and H,C are in FAlg,_, the (a,b,c) diagonal
can be written as a product pairwise diagonals as

F, ®(a,b) G. ®(1,c) H, =F, ®(a,1) ® G ®(b,c) H,

(8.51)
= F. ®(a,1) &® Ho ®(c,b) G.,

where we omit writing the algebra A®p, B®o, C. The products are clearly
associative so we have omitted the parentheses. Verifying Equation only
needs to be done at the level of the diagonal subalgebras, since the filtration
on diagonal is simply the restriction of the tensor product filtration. The two
identities generate the natural associativity and commutativity properties of
the pairwise diagonal product in FAlg, . The same relations descend to the
weighted products in Testg(Y).
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Remark 8.46. There are several potentially confusing aspects about the pre-
vious definitions. First, it makes sense to reparametrise the test class repre-
sented by ar + br by rational numbers in the interval Iy. However, convex
combinations are not well defined for test classes since the diagonal product is
clearly not invariant under replacing one of the filtered algebras by a Veronese
subalgebra

Second, in order to define the filtration associated to the weighted product,
we needed to assume that a and b were sufficiently large in order to make the
multiplication maps in Lemma [8.4T] and Corollary [8.42| surjective. This can be
circumvented by replacing both underlying line bundles by a common power
at the outset.

Third, while our construction gives no way of choosing a unique convex
combination in Testp(Y), we see no need to do this. We are ultimately in-
terested in test classes. By Remark a convex combination of multiple
elements of Testp(Y') can be done simultaneously and there is no need to iter-
ate a pairwise construction. For test degenerations 7 = ([F1AY], ... [FNAN])

and rational numbers

t=(t1,....,tx) € Ay CIY (8.52)
we define Convy(7,t) to be the test class of the (mty,..., mty)-diagonal in
the filtered algebra

N
® FA, (8.53)
i=1

where m is a sufficiently large and divisible integer.

We summarise the contents of Remark [8.45 and Remark [8.46] in the follow-

ing proposition.

Proposition 8.47. Given N elements of Testp(Y), there is uniquely defined
map from IV to the set of test classes of Y relative to p. This map is naturally

fibred over a subset of the set of rays of p-ample line bundles on Y .

Before proving property (iii) of Theorem we state the following lem-
mas. Donaldson reduced the calculation of the total weight to an nonequivari-
ant calculation. The weight calculation done in Chapter [5| are based on this

idea. See also [7T0, Section 2.8.1| for a clear exposition.
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Lemma 8.48. Let X, be a projective G,,-scheme over the complex numbers
with an ample G,,-linearised line bundle L. Then there exists a polarised

scheme (Y, Hr) such that the the weight polynomial is given by
tr H°(Xo, L*) = x(V, H%) — x(Xo, LF). (8.54)
Dervan proved the following generalisation of Donaldson’s formula.

Lemma 8.49 (|22, Lemma 2.30 (iv)]). Keep the notation of Lemma[8.48 and
let A be a G,,-linearised line bundle on Xo. The total weight of the G,,-
representation on the vector space H°(Xy, L* ® A) is given by

E"+O(E™1), (8.55)

tr H(Xo, LF ® A) :trHO(XO,Lk)_/ c1(He) "Cl(HA)
v n!

for some line bundle H4 on ).

Corollary 8.50. Keep the notation of Lemma and let L; be ample G,,-
linearised line bundles on Xo for 1 <i < N. We have an identity

N
tr H%(Xo, Q) L) = Colar,. .., an)k"™ + Ci(ay,. .., an)k" + O(k").

=1

(8.56)
where Co(ay, ...ay) and Ci(ay,...,ayn) are polynomials in ay,...,ay.
Proof. Apply Lemma and Lemma to
N
k a;k
L=L) and A= (X L (8.57)
i=1,i]
forj=1,...,N. O]

Claim 8.51. Property (iii) of Theorem [8.37 holds.

Proof. We show that the Donaldson-Futaki invariant is a continuous rational
function in ¢ for t € An_;.
By the Riemann-Roch formula, there exist polynomials ¢y and ¢; in a; such
that
WX, Q) Li*) = cok™ + ek + O(k"). (8.58)
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In particular, there exist positive numbers ¢y ; such that

N
co = cosaf + 0™, ayh), (8.59)
i=1
since L; are all ample.
By Corollary [8.50| the weight function is similarly a polynomial in the a;.
We conclude that the function

N-1
t — DF (tlTl + -+ tN—lTN—l + (1 - Z ti)TN) (860)
i=1
is continuous rational function in ¢ € Ay_1, since the denominator is always

positive. []

Remark 8.52. There is an alternative way to see that the Donaldson-Futaki
invariant is continuous which uses an intersection theoretic formula for the
Donaldson-Futaki invariant [56, Proposition 6] which holds for normal test
configurations. Assume that L; and L, are ample line bundles on X and
F Ry, and G.R;, are admissible. The bigraded Proj

% = Proju Rees Fy (R, @cpy Rui,) (8.61)

with the Serre line bundle O(a, b) is a test configuration for the product (X x
X, L$ ¥ LY). Restricting 2 to the diagonal yields a test configuration 27
for (X, L{® L5). The filtration associated to 25, is equal to the filtration
(F. ®(a,b) G.) (R, ® Ryp,) so the two test configurations are G,,-equivariantly
isomorphic.

If we assume that 2 is normal, the intersection theoretic formula for the
Donaldson-Futaki invariant [56, p. 225| implies that the Donaldson-Futaki
invariant is continuous in ?.

The above argument generalises to weighted products of a finite collection

of algebras.

We give a very simple example of a family of test configurations on a fixed

polarised variety.

Example 8.53 (A combination of two simple test configurations on a ruled

surface). Let F and @ be very ample line bundles on a curve C of genus g and
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consider the projective bundle P(F @ Q) with its O(1)-polarisation. Let o and
B be the G,,-actions which scale F' and @), respectively, with positive weight

1. The two G,,-actions a and [ determine filtrations

FCFeQ (8.62)
and

QCFaQ (8.63)
and corresponding test configuration % and % for (P(F & @Q),O(1)). The

associated filtrations are discussed in more detail and generality in Section [8.6]

For any natural numbers a and b we define a test configuration of P(F' & Q)
by inducing a G,,-action on P (S“*b(F &) Q)) and restricting to the image of
P(F & @) under Veronese embedding of P(F' & (). The filtration associated

to this test configuration is generated by the grading on the vector bundle
S+ (F & Q) given in Figure

a-+2b

2a +b

Sltbp ... Sp®SeQ---Stb)

Figure 8.1: The t-grading on the Opi-module S** (F @ Q).

An elementary summation shows that the Donaldson-Futaki invariant of

the test configuration atp 4 b7 is given by

3 b3
L @bur 1 —g) + ab’ue +1-9)) '
2p%(a +0)? '

For example, if pp = 2 and pg = 1, we plot the Donaldson-Futaki invari-
ant for different values of a and b in Figure [8.2 The code for repeating the

calculation be found in [47, Ruled surface interpolations|.
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DF(7Q) |- y = DF((1 = t)7r +t7q)

t=1
DF(7r)

Figure 8.2: The Donaldson-Futaki invariant of (1 — ¢)7r + t7¢ plotted against
t= a;ib when pp = 2, ug = 1 and g = 2 equals %(—1+6t—3t2—t3).

8.4 (QOkounkov bodies and the convex transform

of a filtrations

In this section we describe the behaviour of the convex geometry associated to
the variation of filtered linear series coming from the convex structure defined
in Section 8.3 We give a brief review of Okounkov bodies and the convex
transform associated to an admissible filtration. For more details, we refer to
Lazarsfeld-Mustata [54], Boucksom-Chen [14], Witt-Nystrom [89] and Széke-
lyhidi [85].

Let X be a smooth complex projective variety and L a line bundle on
X with ring of sections R = @,-, H(X, L*). Fix a base point p € X and

holomorphic coordinates z1,..., z, centred around p. Given f € R; we may
write

f=sz2{te 2, (8.65)
for some (ry,...,r,) € Z", where s is a holomorphic function on a neighbour-

hood of p which does not vanish at p. We keep the base point and the choice
of coordinates fixed throughout the section.
We define a function v: R — Q" by setting

(riy...,Tn)

v(f)=—"F— (8.66)

for any such f € Ry.

Definition 8.54. Define the Okounkov body of L by A(L) = v(R) C R™.
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It is well known that A(L) is a convex set. Given an admissible filtration

F R, we define
R~ = P Fl Re. (8.67)
k=0

This determines a closed convex subset A(L)St = v(R=<t).

Definition 8.55. Define the convex transform of FyR to be
G(z) = inf{t: x € A(L)='}. (8.68)

If = is rational we have G(x) = inf {%: v(f) = a:} The extension to
real numbers is obtained as the pointwise largest function which is lower semi-
continuous and agrees with the restriction the subset A(L) N Q™.

Suppose now that L; and L, are ample line bundles on X. Let F!R;,
be admissible filtrations for ¢ = 1,2 and let G;: A(L) — R be the convex
transforms of the two filtered algebras.

Let a and b be nonnegative integers such that there exists a surjective

homomorphism
Vi S = ED(Rey)ar @(Rry)e — @D HO(X, (aLy + bLy)). (8.69)
k=0 k=0

for all k > 0. The ring Rz, +b1, is naturally filtered by the image of (F)} ®(qp) F2)S.
The Okounkov body A(aL;+bLs) is contained in the Minkowski sum aA(L;)+
bA(Ls).

Set

U= {(x,v) € R g tve aA(Ll),g —ve bA(Lz)} (8.70)

and define a real valued function H : U — R by setting

~ T+ 2v T — 2v
H,p(x,v) = aGy( o )+ bGo( 5%

Theorem 8.56. The convex transform Gop(x) of the weighted product filtra-
tion (F} ®(ap) FZ) (Rr, ® Ry,) is equal to the minimiser

). (8.71)

H,p(x) = min,ey ?[a,b(ﬂi, v) (8.72)
restricted to the Okounkov body A(aLy + bLs).
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Proof. Let G 3(x) be the convex transform of the filtration (Fy ® (o) Ge)(R® S).
We must show that H,,(x) = G,p(x) for x in

Let © € A(aL; 4+ bLy) N Q" and let v; and v, denote the convex transforms
of F} and F, & (a,b) F?, respectively. We have

Gmb(t’t) = inf {lerEf) . f € (RaL1+bL2)k and

i {lev(g) +lev(h)

vaild) _ x}

19 € Rakry, h € Rygr, and (Y ov,,)(g@h) = ZL‘}

k
> inf {aG1(v1(g)) + bGa(rva(h)): g, h as above}
Z Ha7b(l’).
(8.74)
On the other hand, let ¢ > 0 and fix y and z such that
Hop(x) > aGi(y) + bGa(z) — €. (8.75)

There exists k£ > 0 such that we can find g € (Rp,)au and h € (Ryp,)p such
that

lev(h)

< Gi(y) +€ and < Go(2) + €,
where v;: Ry, — A(L;) are the two valuations. We have

Gap(z) < (lev(g) + lev(h))/k
< aG1(y) + bGa(2) + (a + b)e by choice of g and h
< Hgp(x)+ (a+b+1)e by choice of y and z.

Letting € tend to 0 yields
Gap(z) < Hop(x). (8.76)
If z is irrational, the value of G, () is obtained as the infimum

liminf {Ggp(2'): |z — 2| <0} . (8.77)
6—0
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The same argument works in this case as well, bearing in mind that we may
approximate the value of G, at « by G,;(2') arbitrarily closely since Gy ()

is convex and bounded from below. O

Remark 8.57. This result can easily be extended to convex combinations of

arbitrary finite collections of test degenerations of X.

Remark 8.58. It is convenient to work instead with the Q-line bundle ‘LL;—izLQ
and reparametrise the family of functions H, () as a function

where ¢ ranges over the unit interval. We go a step further and identify the

range of H; with a subset of
V(Lq, Lg) = Conv (A(Lq) x {0}, A(Ly) x {1}) C R" x [0, 1]. (8.79)

It would be interesting to know what kind of behaviour the function H;
can exhibit on V(Ly, Ly). The variation of Okounkov bodies was studied by
Lazarsfeld-Mustata [54, Section 4].

If X is toric, Okounkov bodies are a particularly powerful tool. The follow-
ing examples use the theory of toric varieties. Briefly, the ring of sections of a
polarised toric variety (Xa, L) corresponding to a polytope A = A(L) C R”,

where R™ contains a fixed lattice Z", is given by
R = é Z NA (8.80)
D ’ . :

Sections of H°(X, L*) are identified with points
m/k = (mi/k,...,m,/k) (8.81)

in the polytope A, where m,; are integers. Multiplication of two sections x
and y under this identification corresponds to taking their Minkowsk: average
(x+y)/2in A.

Example 8.59 (Convex combinations of toric filtrations.). Let X be a toric

variety with two line bundles L; and Ly with section rings R and S isomorphic
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to the sets of rational points in A(L;) and A(Lsy), respectively. Let Gy :
A(L;) — R and G5 : A(Ly) — R be lower semicontinuous convex functions

and define filtrations
F/ Ry, = spanp{z € P/k : f(x) < i}, (8.82)

and
F?S, = spanc{p € Q/k : g(B) < i}. (8.83)
In this case the (a, b)-weighted Minkowski average

aA(Ly) + bA(Ly)

P= a+b

, (8.84)

is precisely the Okounkov body of ‘ILCIL—fgLQ in the appropriate sense for Q-line

bundles. The family of convex transforms
Gap: P =R (8.85)

now characterises the family of test degenerations determined by the weighted

product by Donaldson’s theory of toric test configurations [27]. Denote G; =

fjrg, where t = a%b Studying the behaviour of G; as ¢t changes may be a

useful explicit way to study the variation of test configurations in the weighted

product.

Example 8.60. Consider two G,,-actions a and 3 on P! = Proj C[z, y] such
that if (z/y) is a local coordinate, a scales (x/y) by weight ¢ and 8 by —d.
The filtrations F* and F? defined by a and /3, respectively, have linear convex
transforms on the polytope P = @ = [0, 1]. Rational points in [0, 1] correspond

to monomials x#Py? by the bijection

2Pyt < p/(p+ q). (8.86)

It is straightforward to check, either from the definitions or by Theorem [8.56
that the convex transforms of F® F and [F®] + [Ff] are

folz) =14 cz,
fo(@) =1+d(1—z) (8.87)
faws(x) =max{l+ c(x —1/2),1 —d(x — 1/2)},
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respectively. Geometrically, the corresponding degeneration splits P! into two
copies of P! of equal volume intersecting at a fixed point of the G,,-action.
The G,,-actions on the two components are given by scaling a local coordinate

by the integers ¢ and —d, respectively.

Example 8.61. Keep to the notation of Example [8.60 except now let ¢ =
—d =1 and consider the (a, b)-diagonal product of filtrations

(F3 ®(a) FJ)(Clz, y] @c Clz, y]) (8.88)

for each pair of natural numbers (a,b). The total space of the toric family is,
for each pair (a, b), a degeneration of a rational curve into a pair of intersecting
curves of lower degree whose ratio of volumes is equal to t. As t approaches
0, the limiting convex function corresponds to the vector field S. This is also

the natural limiting object in Test(P!).

13
1/2

P

Figure 8.3: The convex functions corresponding to the product a[F%] + b[G?]
in Test(P') for different values of ¢, where we denote t = b/(a+1b).

8.5 Pullback test configurations

We fix a projective morphism p: ¥ — B and let L be an ample line bundle
on B. In Section we defined test configurations which are fibred over B
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in a G,,-equivariant way. As a further application of the constructions of the
previous sections, we construct test configurations of Y which are naturally
fibred over a test configuration of B called pullback test configurations.

Let FyR; be an element of Test(B). After replacing L with a power if
necessary, we obtain an admissible filtration of Ry, also denoted by F,Rp.

Let £ be a relatively ample line bundle on Y and define a map
D@ p) : Test(B) — Testp(Y) (8.89)

by letting ®(F R 1) be the the filtration
P A @ L™ (8.90)
k=0

Lemma 8.62. The map ® preserves admissible filtrations.
Proof. This is a special case of Lemma [8.17] O

Definition 8.63. We say that () (FeRr) is the pullback of FVR weight
(a,b).

Example 8.64 (Pullbacks of test configurations). Assume that F,R; is a
finitely generated admissible filtration and let % be the scheme Proj F\Ry.
Considering the algebra Reesp, @ p)(FeR) as a Og-algebra determines a

morphism
% = ProjgReeso, Pup)(FoRL) (8.91)
such that the diagram
Y —— B
\ ‘il

commutes.

Definition 8.65. Define the line bundle

Loy =0(a)@p L (8.92)
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on Projg A. Alternatively, the line bundle £, is the Serre line bundle on
Proj (A®o, Ri) (- We have already seen in Lemma that given a lo-
cally finitely generated p-test degeneration G, A € Testp(Y), the relative test
configuration

Y =Projp (A®o, RrL) (g (8.93)

is ample for d > 0. Denote the Serre line bundle on % by £, ). In particular,
if a = 1 simply write Z{,) = .

We give two examples of a nice phenomenon which happens with pull-
back test configurations for adiabatic polarisations. The first example, due to
Stoppa [70], was already mentioned in Section [1.2.3]

Example 8.66. Let p: Y — B be a blow up of a zero dimensional subscheme
Z and B a test configuration for (B,L). Let % be the pullback of B of
weight (1,m). Then the Donaldson-Futaki invariant of the test configuration
DF (%, %Z,,) is given by

DF(%,%,,) = DF(B) — Cm'™"™ + O(m™), (8.94)
where n is the dimension of B and (' is a positive constant.

Similar results were also proved for slope stability by Ross and Thomas
[68, Section 5.5], and later by Stoppa [80, Lemma 3.1].

The second example is due to Ross and Thomas [68] Section 5.4].

Example 8.67. Let p: Y — B be a projective bundle or a flag bundle and
B’ a subscheme of B. Let % be a pullback test configuration with weight
(1,m) of the slope test configuration of Zg: C Op defined in Remark with
slope parameter 1. Then the leading term in m € N of the Donaldson-Futaki
invariant of the test configuration DF(%/,.%,,) is given by

DF(#,L,,) = DF(B) + O(m™1), (8.95)

where (B, L) is the test configuration determined by the pullback of B’.
Ross and Thomas presented the calculation in the case of a projective

bundle but the flag bundle case follows verbatim.
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Remark 8.68. In the following we have various spaces of sections endowed
with natural G,,-actions. For each vector space we wish to have a succinct
and obvious notation for the trace function defined on page 39 Given a vector

space V with a natural G,,-action, we write the trace function simply as tr V.

Remark 8.69. A product of two cscK polarised varieties (X, L) and (X, L2)
is cscK with respect to the product polarisation L ® Lo. It is our hope that an
algebraic proof of the K-stability of the polarisation L; ® Ly would be found.
The difficulty is having to consider test configurations which are not pullbacks
from either X; or X5. We believe it should not be necessary to consider these
more complicated test configurations to decide whether (X; x X5, L1 ® L) is
K-stable, in contrast with the example of an unstable product of two curves
in [67].

Remark 8.70 (Toric bundles). There is a simple type of relative test configu-
ration that has appeared in [3]. Let E be a principal GL(n, C)-bundle over B
and consider a torus bundle T in E with fibre (G,,)*¢. Then one may define a
fibrewise orbit closure Y of T using the theory of toric varieties. The theory of
toric test configurations developed in [27] generalises to this context and yields
test configurations which intuitively degenerate fibres of the projection Y — B
in a uniform way. The authors of [3] proved partial results about the extremal
YTD correspondance for adiabatic polarisations on toric bundles constructed
in this way.

We think of the test configurations defined in [3], which preserve the ho-
motopy type of the associated principal bundle but degenerate the fibres of
p: Y — B, as complementary to the test configuration defined in Chapter
We studied test configurations which changes the homotopy type of the
associated principal GL(n, C)-bundle but preserves the fibres of p.

In light of the previous remarks, we conclude that particularly on adia-
batic polarisations of Y, there are two natural families of test configurations:
ample p-test configurations and pullback test configurations. A perhaps naive
conjecture we wish to make, motivated by known partial results on blowups,
projective bundles, rigid toric bundles blowups and now flag bundles, is that
these two test classes of test degenerations characterise the stability of adia-

batic polarisations in the following sense.
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Conjecture 2. Letp: Y — B be a projective morphism with (B, L) a polarised
variety and L,p) as in Definition . Then there exists an integer by > 0
such that the pair (Y, Lip) is K-stable (K-polystable, K-semistable) for b > by
if and only if it is K-stable with respect to test configurations in Testp(Y, Lap,))
and pullback test configurations under the projection p with weight (a,bg).

Remark 8.71 (Some remarks about Conjecture [2)). The hypothesis that projec-
tive morphism should be enough to yield the statement may be overenthusiastic
as we have only studied very simple examples (flag bundles in Chapter |5 and
certain closed immersions in Chapter [7)) in this work.

We also conjecture that the Conjecture 2| holds with admissible filtrations
and K-stability in place of test configurations and K-stability.

Finally, an example in Ross [67] shows that the statement of the conjecture

does not hold for arbitrary polarisations on Y.

8.6 Natural filtrations of shape algebras

Fix a coherent sheaf £& with a subsheaf F on a scheme B, a partition A with
jumps given by r. Then we define a filtration W,S,(€) which is generated by
F C & (cf. Definition and Definition 8.18). The basic idea goes back
to Griffiths, who defined a natural filtration of an exterior power of a vector

bundle [3§].
Example 8.72. The filtration of S(£) generated by F C £ is given by

FCERS*FcEDF -ES3F

(8.96)
CERSERF-S2edSiEC---.

Here we have used the notation F - € to mean tensors in S2€ which are in the
image of the symmetrisation map F ® £ — S*E. Note that the same filtration
can be obtained from the filtration Zpr C Opg using Remark [8.34]

In general, the subsheaf 7 C &£ generates a filtration

WOE")\ = (W.SA(E))ly (897>
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which we write in terms of the factors of F and £ in the tensor algebra T'(&)
as

W.E» = ¢y (]_—®z- ®5®(H’)) Rcexce,_] C[SI). (8.98)

Here ¢ is the Young symmetriser (cf. Definition and C[S;] denotes the
group algebra of the symmetric group, which acts on T'(£) by permuting the
tensor factors. In other words, the module W;E? is generated by tensors with
at least ¢ factors are contained in F. The filtration in Equation is a
finite decreasing filtration and a simple change of indexing yields an increasing
filtration which generates an admissible filtration of the algebra S)(£). We
call this filtration the F-weight filtration of Sx(€) and denote it by /WfS,\(E).
In contrast, we denote the filtration generated by the descending filtration of

Equation of increasing powers of F by W,FS,(E).

Remark 8.73. The test configuration determined by the subsheaf F C & for
flag bundles is not given by the theory of slope stability as it does in the case
of projective bundles Example [8.72] but by a more complicated filtration of
the structure sheaf O, (&) (Remark and Remark . This filtration
is obtained from a flag of relative Schubert varieties determined by increasing

incidence conditions with the subsheaf F.

Example 8.74 (Computation of the weight function). Consider a direct sum
F @ Q of coherent sheaves on B. We write

S(FoQr=Fo"= §H MIF e (8.99)
DEEMEN
using the Littlewood-Richardson rule. We have
WE™ = @ MjF @ Q. (8.100)
|v[<i

We define the corresponding weight function

o0

w(k) =Y i (X(WiS\(F & Q)i) — x(Wiet Sx(F & Q1))

=0

S oo

(8.101)

This is the weight function which appeared in Lemma [5.11]
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Example [8.53| generalises to more general flag bundles, but the trick we

used in Chapter 5| does not compute the weight function any longer.

Example 8.75 (A product of two simple filtrations of a shape algebra). Let
E be a vector bundle isomorphic to a direct sum of subbundles F' & Q). Let
A = S, (F) be a shape algebra for Fi,.(E) with a polarisation £,(A). Consider
the two filtrations WS A and WE@A. The filtration

FRQCFRE®Q®E=SFE (8.102)

generates the tensor product filtration (W* ®(; 1) W?)(A®oe, A) of the (1,1)-
diagonal of A®e, A via the projection

a: Sy(S?E) — Son(E). (8.103)

The kernel of « is a complicated object which can be described by decomposing
the representation Sy(S?FE) into irreducible representations. The composition

of Schur functors is called plethysm [88] p. 63].
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Chapter 9
Further directions

We end by outlining three directions in which this work can be developed. Fix

a smooth scheme B over C and vector bundle £ of rank rg on B.

9.1 Chern character formula

We hope to find a generalisation to the Chern character formula of Theorem
[4.3] The proof we presented required the assumption that A is proportional to
the canonical partition o, , for some tuple r, but it is easy to verify compu-
tationally that this assumption is not required for the statement to be true in
many special cases. Perhaps it is possible to use Schubert calculus to reduce
inductively to the case solved in this thesis. The assumption on the partition
forced us to make a highly undesirable restriction in our choice of polarisation
for the flag bundle in our discussion of its K-stability in Chapter [j]

Decompose ch E** as follows

b
ch B* = rankEk’\ZBi(E, k), (9.1)

i=1
where B;(E, \) has degree i in the Chow ring of B. Then expand B;(E, k)

by decreasing degree in k as
Bi(E,\) = Bigk' + Bi k"' + - + Bk, (9.2)

It seems that a general closed formula for the polynomials B;;(E, \) in the ex-
pansion should be attainable, generalising Manivel’s beautiful result stated
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in Theorem [£.9

9.2 Flag bundles and projective bundles

Let (B, L) be a smooth polarised variety of dimension b and F is a vector
bundle on B.

If the underlying vector bundle has higher rank, K-stability of its flag bun-
dles depends on higher Chern classes, which were cancelled out by considering
adiabatic polarisations in Section [5.3] It would be interesting to know if such
dependence has a geometric interpretation. This would require generalising
Theorem describing terms in Equation (9.2)).

In the adiabatic case that it suffices to calculate B;y and B;;. While this
is possible for fixed k£ and A, it does not seem easy to generalise the arguments
of [60] or Chapter {4 to obtain the coefficients B; ;. For general polarisations,
the knowledge of the term Bjs; would immediately allow the calculation of
Donaldson-Futaki invariants of any test configuration induced a subbundle
filtration F' C E, and the base B has dimension 2. It may be possible to
extend the arguments of Chapter (4| to this case.

Classical flag varieties which are studied in this work are only one example
of a more general construction. Let G be a semisimple complex group. Then
quotients of G' by subgroups containing the Borel subgroup of G are projective
varieties. We call such a variety a generalised flag manifold. They are classified
by subsets of nodes on Dynkin diagrams of the Dynkin diagram of the cor-
responding group G. From the point of view of Kéhler geometry, generalised
flag manifolds have very similar properties to the classical ones.

A Borel-Weyl pushforward formula, similar to one stated in Section for
classical flag bundles, also holds for the symplectic and orthogonal groups [88|
Chapter 4|. For example, if F' is a vector bundle of even rank on the base B
and

(w):FxgF—C (9.3)

is a symplectic form. We define the isotropic flag variety ZFlag,(E) of r-
flags of isotropic subspaces in F*. Subbundles of F' can be used to define test

configurations of ZFlag,(E). It would be interesting to know if the behaviour
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of the Donaldson-Futaki invariants is similar to that seen in Chapter [5]

9.3 Relative K-stability and operations on test

configurations

Ampleness of the relative test configurations was not discussed in this work.
This is a fundamental property which brings us back to the theory of K-
stability. An effective result is not known to us even in the flag bundle case.

We believe that explicitly computing Donaldson-Futaki invariants of fam-
ilies of test configurations in examples can be used to exhibit new interesting
behaviour of K-stability in the cone of polarisations. We hope this may help in
establishing a conjectural picture for the behaviour of K-stability in families of
polarised varieties where the polarisation L varies on a fixed underlying variety
X.

The calculations presented in this work could be generalised to give fur-
ther examples of K-unstable varieties. For example, the stability of higher
dimensional projective bundles is still wide open over a higher dimensional
base and Donaldson-Futaki invariants have only been computed for very sim-
ple test configurations. Finding an explicit formula for the Donaldson-Futaki
invariant similar to one found in Example [8.53| should be possible in higher
dimensions, particularly, if the vector bundle is a direct sum of two line bun-
dle. We believe that it should be possible to, for example, find a examples
of nonalgebraic obstructions on both rational and irrational polarisations this
way by using Remark

Although we do not expect it to have applications to K-stability, describing
the convex geometry associated to convex transforms on moving Okounkov
bodies as the polarisation varies, discussed in Section is an interesting on

its own right.
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Appendix A

Appendix

A.1 Combiproofs

We include the proofs of the combinatorial formulae for completeness.

Lemma A.1. Let k and n be integers and let p(k) = (k+”_1). Then

n—1

ofn—2+k—1 n+2k—1)(k+n-—1) 5
Zz( nf? >:< +(k—1)!)((n——:—_1)! E = @7+ K~ 1)p(h
(A1)

)

and

Zz’j(”_3:’_“3_i_j> _ (k(ﬁ;)?(;i)i)! C ket Dp(k). (A2)

i3

Proof. We prove the first identity by induction on n and k. Let

Pk =30 (“‘jf’;") (A.3)

%

(Z) - (Z: D + (n k 1)’ (A.4)

Using the identity
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which holds for all 0 < k <n — 1 we see that

f(k,n):f:z'?(”_sfl;_i)

=1

_k2+z <(n_3+§_l)+<n_22(f2_1)_i>) (A.5)
:k2+f( n—1)—k*+ f(k—1,n)
=f(k—1,n)+ f(k,n—1).

Finally we verify that

(n+2k=3)(k+n—-2)! (n+2k—-2)(k+n-2)! n+2k—-1)(k+n—1)

(DTS k= 1! T k= Dlnt 1)
(A.6)

This completes the induction step. The base case follows from verifying the
cases f(k,2) and f(1,n).
The proof of the second identity is almost identical. Let

Again we have

k k=1 k—i—1 . .
n—44+k—i—) n—3+k—1—i1—j
g(k,n) = 5 i(k —1i)+ zg(( o4 )—i—( "3

i=1 =1 j=1

B
Ed

= i(k—i)+g(k,n—1) =Y i(k—i)+g(k—1,n)

i=1 =1

=g(k—1,n)+g(k,n—1).

(A.8)
Verify the right hand side as above by computing
— 9 — N — 1!
(k+n—2)! +(k:—|—n 2).: (k+n—1)! . (A.9)
(k=3)!(n+1)!  (k—2)n! (k—=2)l(n+1)!
The base case follows from verifying the cases g(k,2) and g(1,n). O
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Remark A.2. Let u be a partition. Higher degree terms of Chern characters of
symmetric bundles can be computed from a more general formula for f(k, n, u),

where

E k—iy —(i14+iu—1)
S S k—e(\) —u—1
kn)\ Z Zjllziu(n—i_ 01()1u ))
i1=1149=1 tu=1 n—u-—
(A.10)

where we denote ¢;(\) = u.

A.2 An elementary proof of Arezzo-Della-Vedova’s

formula

For completeness, we present an elementary derivation of the formula for the
Futaki invariant of a complete intersection along the same lines as [7, Section
4.

Definition A.3. Let p(k) be a polynomial in k£ with coefficients in an arbitrary

ring and s a vector of u natural numbers (s; ...s,). Define

p*(k) =p(k) = p(k — 1) + -+ p(k — s.) + Y _p(k —s; — ;)
i#] (A.11)

Lemma A.4. Let
p(k) = agk™ + a k"1 + O(k"?) (A.12)

be a polynomial of degree n with coefficients in an arbitrary ring and s =

(s1...54). Then p*(k) is a polynomial of degree n — q and if we write

= kT (A.13)
i=0
the first two coefficients are given by

co = C(s)ag (A.14)
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and

woc (20 (- tTh)

C(s) = (H 51») (nﬁ—'u)' (A.16)

=1

where

Proof. The proof is an easy induction on u. If » = 1 the statement is easy to
verify. Let m € N. We have

p(k) = pk —m) = nmaok"~" +m ((” ~ Do = (n > 1) ao) P A

+ O(k"%)
as required. Assume that the statement holds for all u-tuples and let s =
(S$1,...,8,) and 8’ = (s1,...,S,.41). Notice that
P (k) = p(R) — p*(k — sus1). (A.18)

so by the inductive hypothesis we have

Pk — Sup1) = cok™ "+ (c1 — (n — u)spy1c0) K"
+ (62 —c(n—u—1)s,41+ o (n ; u) siH) K2 (AL19)
FO("),

where ¢y and ¢; are as in the statement of the Lemma. Finally, we verify that

(n — u)supir! (1}) (Z) (u+1)! <ﬁs) (u+1> a  (A.20)

and
ci(n—u—1)s,41 — o <n ; u) So
u+1 u+1 (A21)
n—1 ny s
(u+1) (gs> (u—i— 1) (al 5 ao)
as required. O
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Proof of Proposition[7.5 We will use the Koszul resolution to compute the

Hilbert and trace polynomials. We have the exact sequence

0= Oy(k—> ;) =+ = @B, Oy (k — s;) = Oy (k) = Ox(k) = 0.
j=1

(A.22)
Thus the Hilbert polynomial of X is given by
(X, Ox(k Z S (1YY, Oy (k= s)) (A.23)
Jj=0 |I|=j lel

where the summation is over all subsets I of {1,...,r} of size j. We denote
the Hilbert polynomial of Oy (1) by A (k) and expand it as

B (k) = ak™ + a k™" + O(k"?). (A.24)
The highest order terms of the Hilbert polynomial
RY(X, Ox(k)) = cok™ ™ + c k"t + O(k" " 72). (A.25)

of Ox(k) are given by Lemma[A.4 The trace of the G,,-action on X is com-
puted similarly. Let wy (k) and wx (k) be the weight polynomials of the G,,-
representations on H°(Oy (k)) and H°(Ox(k)), respectively, and write them

as
wy (k) = bok™™ + bik™ + O(k" ™) (A.26)

and
wx (k) = dok™ T 4 d kT O(k””‘fl). (A.27)

By keeping track of the Z-grading in the exact sequence in Equation ((A.22)),
we find

E d (1) wy (k=55 — -+ — ;)

=0 =g (A.28)
Z T (s14 -+ 8)h(Y, 0k — s, — -+ — 53,)).
We rewrite this as
wx (k) = wy (k) — 2751‘ (RY)* (k — s;) (A.29)

=1
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where the hat notation means that the ith member of the tuple is omitted,
that is
S = (81,...,81,1,81+1,...$u). (ASO)

)

Using Lemma on wy (k) and (h%)% (k — s;), we see that

(n+1)! [T, s
do= — L (T |0 =t
T n—u+1) (HS> o 72( n—u+1) S; >a0

(A.31)
n—+1 Yu
— LI i S
C<§>n—u+1 ( 0 n+1a0)
and
n' “ (n + ]‘) 2]71 S]
h (n—u)! (H Si) (bl B 2
=1
_Vi:(sz n— DT s N 15~ Si .
i=1 (A.32)
- n! ITi= s
_ 1)s2 J
+7;(n u+1)s; TS ag
= (C(s) (61 - ’y%al + Zl21 &l ((u+ 1)yap — (n + )bo))) :
Denote py = a1/ag, vy = bo/ag and S =) | s,. Notice that
b b b
DF(#) = 20— 2L = vy — 22 (A.33)
aO ao ao
The Donaldson-Futaki invariant of 2" is therefore given by
DF(2) = B _ 4
. on+1 o _Ju \n—u B ﬁ
Tn—u+1\Y o+l n Hy 2
by S
— —+7 py — 5 ((u+1)y = (n+ry))
o 2 (A.34)
_(n+ 1)(n —u) S nuSy  nSvy  uypy
 (n—u+1)n vy 2(n+1) 2 n+1
u u+1)S n—+1)Sv
—MyVy+DF(@/)+75NJY_< 2) 7+( 2> -
— 1
_DR@) + v =y ((n+1)S upy ‘
n—u+1 2 n



This completes the proof.
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