Uniformisation theorem for flag bundles over Riemann surfaces

Anton Isopoussu

August 5, 2019

Abstract

We show that there is a simple extension of the Uniformisation Theorem to flag varieties of polystable vector bundles over Riemann surfaces.

1 Introduction

Let C be a curve and denote its fundamental group by Γ without reference to the choice of a base point. Let \hat{C} be the universal cover of C, which is one of the three model spaces given by the Uniformisation theorem. Let π be the canonical projection $\hat{C} \to C$ and σ the covering action $\hat{C} \times \Gamma \to \hat{C}$.

Theorem 1. Let E be a polystable vector bundle on C and let $\mathcal{F}l_r(E)$ be a flag bundle of E over C. All Kähler classes in $\mathcal{F}l_r(E)$ are cscK. In particular, $\mathcal{F}l_r(E)$ is K-semistable for all polarisations.

We obtain a partial Yau-Tian-Donaldson correspondence for flag bundles on high genus curves using Theorem 1.

Theorem 2. Let $(\mathcal{F}l_r(E), \mathcal{L}_{\lambda}(A))$ be a polarised flag bundle on C.

If E is polystable, the flag bundle $(\mathcal{F}l_r(E), \mathcal{L}_{\lambda}(A))$ is K-semistable. If E is stable and $g \geq 2$, then the variety $(\mathcal{F}l_r(E), \mathcal{L}_{\lambda}(A))$ is K-stable.

Finally, if E is simple and $g \ge 2$, the YTD correspondence holds for any line bundle $\mathcal{L}_{\lambda}(A)$ with $\lambda \in \mathcal{P}_{\diamond}(r)$ and A ample.

We prove the following Lemma in Section 3.

Lemma 3. If the vector bundle E is simple and the genus satisfies $g \ge 2$, then the automorphism group of $\mathcal{F}l_r(E)$ is discrete.

Proof of Theorem 2. The first statement follows directly from Theorem 1 and Proposition ??.

For the second statement, we also need Lemma 3 and Proposition ?? which strengthens Proposition ?? in the case of a discrete automorphism group.

If E is polystable, the final statement follows from the second statement. If E is simple but not polystable, then we can construct a destabilising test configuration for $(\mathcal{F}l_r(E), \mathcal{L}_{\lambda}(A))$ by Theorem ??.

Remark 4. In order to prove a full YTD correspondence on flag bundles over curves one would need to analyse the delicate cases when $\mathcal{F}l_r(E)$ admits vector fields. By Equation (18) and the preceding discussion we see that this may happen when the base curve C is an elliptic curve and when E is properly polystable, that is, isomorphic to a direct sum of stable vector bundles of equal slopes. If the base curve C is isomorphic to \mathbb{P}^1 , Grothendieck's theorem states that any holomorphic vector bundle E can be decomposed into a direct sum $\bigoplus_{i=1}^{r_E} \mathcal{O}_{\mathbb{P}^1}(m_i)$ for some $m_i \in \mathbb{Z}$ for $i = 1, \ldots, r_E$ [?].

2 Construction of flag bundles from representations of the fundamental group

Let G be an algebraic group and $\rho: \Gamma \to G$ be a representation. We define the associated bundle with fibre G [3]

$$\mathbb{E}_{\rho} = \widehat{C} \times G / \Gamma \tag{1}$$

by the identification

$$(c,g) \sim (\sigma(\gamma,c), \rho(\gamma)g)$$
 (2)

for $(c,g) \in \widehat{C} \times G$ and $\gamma \in \Gamma$. The quotient space \mathbb{E}_{ρ} is an algebraic principal bundle over the curve C.

A representation $\rho: \Gamma \to \mathrm{GL}(e, \mathbb{C})$ determines a vector bundle E_{ρ} by setting

$$E_{\rho} = C \times \mathbb{C}^{r_E} / \Gamma \tag{3}$$

by the identification in Equation (1) with $\operatorname{GL}(e,\mathbb{C})$ acting on \mathbb{C}^{r_E} in the usual way. The vector bundle E_{ρ} and its associated frame bundle \mathbb{E}_{ρ} have natural Zariski trivial algebraic structures since the fibre of \mathbb{E}_{ρ} is $\operatorname{GL}(r_E,\mathbb{C})$ [4].

A locally trivial holomorphic fibration with fibre F is a holomorphic map $f: M \to M'$ of complex manifolds M and M' such that each point $x \in M'$ has an analytic neighborhood $U \subset M'$ such that the restriction of f to U is given by the first projection $U \times F \to U$.

Theorem 5. Suppose that E is polystable vector bundle over a (complex, smooth, projective) curve C. Let \overline{P}_r denote the image of the parabolic subgroup $P_r \subset \operatorname{GL}(r_E, \mathbb{C})$ in $\operatorname{PGL}(r_E, \mathbb{C})$. Then there exists representation $\rho \colon \Gamma \to \operatorname{PGL}(r_E, \mathbb{C})$ such that the holomorphic quotient map

$$C \times \mathrm{PGL}(r, E) / \bar{P}_r \to \mathcal{F}l_r(E)$$
 (4)

is a holomorphic locally trivial fibration with fibre Γ .

Proof of Theorem 5. Let \mathbb{E} be the frame bundle of E and define the projectivised frame bundle

$$\bar{\mathbb{E}} := \mathbb{E} \big/_{\mathbb{G}_m},\tag{5}$$

where \mathbb{G}_m acts via the inclusion

$$\lambda \mapsto \lambda I \in \mathrm{GL}(r_E, \mathbb{C}) \tag{6}$$

for $\lambda \in \mathbb{G}_m$. By the Narasimhan-Seshadri Theorem ?? there exists a representation $\rho : \Gamma \to \mathrm{PGL}(r_E, \mathbb{C})$ such that \mathbb{E} is the associated bundle

$$\bar{\mathbb{E}} = \left(\widehat{C} \times \mathrm{PGL}(r_E, \mathbb{C})\right) / \Gamma.$$
(7)

of the representation ρ Since multiples of the identity matrix are contained in P_r we can write

$$\mathcal{F}l_r(E) = \bar{\mathbb{E}}/\bar{P}_r.$$
(8)

Hence the representation ρ induces an action of Γ on $\mathcal{F}l_r(E)$. The double quotient

$$\widehat{C} \times \mathrm{PGL}(r_E, \mathbb{C}) \longrightarrow \mathbb{E} \longrightarrow \mathcal{F}l_r(E)$$
 (9)

can be factorised in two ways. We define the map

$$\hat{\pi}: \widehat{C} \times \mathrm{PGL}(r_E, \mathbb{C}) / \bar{P}_r \longrightarrow \mathcal{F}l_r(E)$$
 (10)

by

$$(x, g\bar{P}_r) \mapsto \left(\sigma(\Gamma, x), \rho(\Gamma)g\bar{P}_r\right) \in \mathcal{F}l_r(E).$$
(11)

The map $\hat{\pi}$ fits into the diagram

$$\begin{array}{c} C \times \mathrm{PGL}(r_E, \mathbb{C}) \longrightarrow \mathbb{E} \\ & \downarrow \\ \widehat{C} \times \mathrm{PGL}(r_E, \mathbb{C}) / \bar{P}_r \xrightarrow{\hat{\pi}} \mathcal{F}l_r(E) \end{array}$$

and is a locally trivial holomorphic fibration with fibre Γ , since π is.

~

3 Constant scalar curvature Kähler metrics on flag bundles and K-polystability

We begin with a proof of Theorem 1, then turn to the proof of Lemma 3.

Proof of Theorem 1. Let G denote the group $\mathrm{PGL}(r_E, \mathbb{C})$. The Picard group of $\mathcal{F}l_r(E)$ is generated by line bundles of the form $\mathcal{L}_{\lambda}(A)$ where λ is in $\mathcal{P}(r)$ and A is a line bundle on C by Lemma ??.

Fix a line bundle $M = \mathcal{L}_{\lambda} \otimes A$ with $A \in \operatorname{Pic} C$ and $\lambda \in \mathcal{P}(\lambda)$. Let

$$\pi \colon \widehat{C} \times G/P_r \to \mathcal{F}l_r(E) \tag{12}$$

be the projection constructed in Theorem 5.

There is a Kähler-Einstein (hence cscK) metric ω_0 in $c_1(\mathcal{L}_\lambda)$, unique up to the action of G, by results of Koszul and Matsushima [2]. Let s_0 be the (constant) scalar curvature of ω_0 . Let ω_A be a constant scalar curvature metric such that $2\pi[\omega_A] = c_1(A)$ with scalar curvature s_1 and let ω_1 be the pullback to \widehat{C} . Since $\omega_0 + \omega_1$ is Γ -invariant, it descends to a form ω on $\mathcal{F}l_r(E)$ with constant scalar curvature $s_0 + s_1$.

Let V be a complex vector space of dimension r_E . In order to apply a classical result of Demazure, we regard $\mathcal{F}l_r(V)$ as a quotient of $\mathrm{PGL}(r, V)$. Let Q_r be the image of a stabiliser of an r-flag of subspaces in $\mathrm{PSL}(r_E, \mathbb{C})$ and let \mathfrak{q}_r be its Lie algebra. Also let $\mathfrak{psl}(r_E, \mathbb{C})$ denote the Lie algebra of $\mathrm{PSL}(r_E, \mathbb{C})$. We have a well known exact sequence

$$0 \longrightarrow (\mathrm{PSL}(r_E, \mathbb{C}) \times \mathfrak{q}_r)/Q_r \longrightarrow \mathrm{PSL}(r_E, \mathbb{C})/Q_r \times \mathfrak{psl}(r_E, \mathbb{C}) \longrightarrow \mathcal{T}_{\mathcal{F}l_r(V)} \longrightarrow 0.$$
(13)

where Q_r acts on \mathfrak{q}_r by the adjoint action and $\mathcal{T}_{\mathcal{F}l_r(V)}$ is the tangent bundle.

It follows from results of Demazure and Bott [1, Section 4.8] that we have

$$H^{i}\left(\mathcal{F}l_{r}(V), \mathcal{T}_{\mathcal{F}l_{r}(V)}\right) = \begin{cases} \mathfrak{psl}(r_{E}, \mathbb{C}), \text{ if } i = 0\\ 0, \text{ otherwise.} \end{cases}$$
(14)

Let $p : \mathcal{F}l_r(E) \to C$ be the projection. Since $\mathcal{F}l_r(E)$ is Zariski locally trivial on C, this generalises in a straightforward manner. Let h be a hermitian metric on E and let $\operatorname{End}^0(E)$ denote the sheaf of trace-free endomorphisms on E. Let U be a Zariski open set in C such that

$$\mathcal{F}l_r(E) \cong U \times \mathcal{F}l_r(V).$$
 (15)

We have a natural identification

$$\left(\mathcal{E}nd^{0}(E)/\mathbb{C}\right)\Big|_{U} \cong \mathcal{O}_{B}\Big|_{U} \otimes \mathfrak{psl}(r_{E},\mathbb{C}),\tag{16}$$

where the \mathbb{C} denotes the constant sheaf included in $\mathcal{E}nd^0(E)$ as multiples of the identity. Let $\mathcal{V}_{\mathcal{F}l_r(E)}$ denote the relative tangent bundle of $\mathcal{F}l_r(E)$ with respect to the projection p. We obtain from Equation (14)

$$R^{i}p_{*}\mathcal{V}_{\mathcal{F}l_{r}(E)} = \begin{cases} \mathcal{E}nd^{0}(E)/\mathbb{C} \text{ if } i = 0 \text{ and} \\ 0 \text{ otherwise,} \end{cases}$$
(17)

Proof of Lemma 3. We must show that the vector space $H^0(\mathcal{F}l_r(E), \mathcal{T}_{\mathcal{F}l_r(E)})$ is trivial. We have the exact sequence

$$0 \longrightarrow \mathcal{V}_{\mathcal{F}l_r(E)} \longrightarrow \mathcal{T}_{\mathcal{F}l_r(E)} \longrightarrow p^* \mathcal{T}_C \longrightarrow 0$$
(18)

where \mathcal{T}_C is the tangent bundle of the curve C. It suffices to show that $H^0(\mathcal{F}l_r(E), \mathcal{V}_{\mathcal{F}l_r(E)}) = 0$ since $H^0(C, \mathcal{T}_C) = 0$ as the genus g(C) satisfies g(C) > 1. The vector bundle E is simple, therefore we have $H^0(C, \mathcal{E}nd(E)) = \mathbb{C} \cdot \mathrm{Id}_E$. The claim follows by identifying $H^0(C, \mathcal{E}nd^0(E))$ as a subspace of $H^0(C, \mathcal{E}nd(E))$.

References

- [1] D. Akhiezer. Lie group actions in complex analysis. Springer, 1995.
- [2] D. Alekseevskii and A. Perelomov. Invariant Kähler-Einstein metrics on compact homogeneous spaces. Functional Analysis and Its Applications, 20(3):171–182, 1986.
- [3] S. Kobayashi. Differential geometry of complex vector bundles. Princeton University Press, 2014.
- [4] J.-P. Serre. Espaces fibrés algébriques. Séminaire Claude Chevalley, 3:1–37, 1958.