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Abstract

We show that there is a simple extension of the Uniformisation Theorem to flag varieties of
polystable vector bundles over Riemann surfaces.

1 Introduction

Let C be a curve and denote its fundamental group by Γ without reference to the choice of a
base point. Let Ĉ be the universal cover of C, which is one of the three model spaces given by
the Uniformisation theorem. Let π be the canonical projection Ĉ → C and σ the covering action
Ĉ × Γ→ Ĉ.

Theorem 1. Let E be a polystable vector bundle on C and let F lr(E) be a flag bundle of E over C.
All Kähler classes in F lr(E) are cscK. In particular, F lr(E) is K-semistable for all polarisations.

We obtain a partial Yau-Tian-Donaldson correspondence for flag bundles on high genus curves
using Theorem 1.

Theorem 2. Let (F lr(E),Lλ(A)) be a polarised flag bundle on C.
If E is polystable, the flag bundle (F lr(E),Lλ(A)) is K-semistable. If E is stable and g ≥ 2,

then the variety (F lr(E),Lλ(A)) is K-stable.
Finally, if E is simple and g ≥ 2, the YTD correspondence holds for any line bundle Lλ(A) with

λ ∈ P�(r) and A ample.

We prove the following Lemma in Section 3.

Lemma 3. If the vector bundle E is simple and the genus satisfies g ≥ 2, then the automorphism
group of F lr(E) is discrete.

Proof of Theorem 2. The first statement follows directly from Theorem 1 and Proposition ??.
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For the second statement, we also need Lemma 3 and Proposition ?? which strengthens Propo-
sition ?? in the case of a discrete automorphism group.

If E is polystable, the final statement follows from the second statement. If E is simple but not
polystable, then we can construct a destabilising test configuration for (F lr(E),Lλ(A)) by Theorem
??.

Remark 4. In order to prove a full YTD correspondence on flag bundles over curves one would need
to analyse the delicate cases when F lr(E) admits vector fields. By Equation (18) and the preceding
discussion we see that this may happen when the base curve C is an elliptic curve and when E is
properly polystable, that is, isomorphic to a direct sum of stable vector bundles of equal slopes. If
the base curve C is isomorphic to P1, Grothendieck’s theorem states that any holomorphic vector
bundle E can be decomposed into a direct sum

⊕rE
i=1OP1(mi) for some mi ∈ Z for i = 1, . . . , rE

[?].

2 Construction of flag bundles from representations of the
fundamental group

Let G be an algebraic group and ρ : Γ → G be a representation. We define the associated bundle
with fibre G [3]

Eρ = Ĉ ×G/Γ (1)

by the identification
(c, g) ∼ (σ(γ, c), ρ(γ)g) (2)

for (c, g) ∈ Ĉ ×G and γ ∈ Γ. The quotient space Eρ is an algebraic principal bundle over the curve
C.

A representation ρ : Γ→ GL(e,C) determines a vector bundle Eρ by setting

Eρ = C × CrE/Γ (3)

by the identification in Equation (1) with GL(e,C) acting on CrE in the usual way. The vector
bundle Eρ and its associated frame bundle Eρ have natural Zariski trivial algebraic structures since
the fibre of Eρ is GL(rE ,C) [4].

A locally trivial holomorphic fibration with fibre F is a holomorphic map f : M →M ′ of complex
manifolds M and M ′ such that each point x ∈M ′ has an analytic neighborhood U ⊂M ′ such that
the restriction of f to U is given by the first projection U × F → U .

Theorem 5. Suppose that E is polystable vector bundle over a (complex, smooth, projective) curve
C. Let P̄r denote the image of the parabolic subgroup Pr ⊂ GL(rE ,C) in PGL(rE ,C). Then there
exists representation ρ : Γ→ PGL(rE ,C) such that the holomorphic quotient map

Ĉ × PGL(r, E)
/
P̄r → F lr(E) (4)
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is a holomorphic locally trivial fibration with fibre Γ.

Proof of Theorem 5. Let E be the frame bundle of E and define the projectivised frame bundle

Ē := E/Gm, (5)

where Gm acts via the inclusion
λ 7→ λI ∈ GL(rE ,C) (6)

for λ ∈ Gm. By the Narasimhan-Seshadri Theorem ?? there exists a representation ρ : Γ →
PGL(rE ,C) such that Ē is the associated bundle

Ē =
(
Ĉ × PGL(rE ,C)

)/
Γ. (7)

of the representation ρ Since multiples of the identity matrix are contained in Pr we can write

F lr(E) = Ē/P̄r. (8)

Hence the representation ρ induces an action of Γ on F lr(E). The double quotient

Ĉ × PGL(rE ,C) −→ E −→ F lr(E) (9)

can be factorised in two ways. We define the map

π̂ : Ĉ × PGL(rE ,C)/P̄r −→ F lr(E) (10)

by
(x, gP̄r) 7→

(
σ(Γ, x), ρ(Γ)gP̄r

)
∈ F lr(E). (11)

The map π̂ fits into the diagram

Ĉ × PGL(rE ,C) E

Ĉ × PGL(rE ,C)/P̄r F lr(E)π̂

and is a locally trivial holomorphic fibration with fibre Γ, since π is.

3 Constant scalar curvature Kähler metrics on flag bundles
and K-polystability

We begin with a proof of Theorem 1, then turn to the proof of Lemma 3.
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Proof of Theorem 1. Let G denote the group PGL(rE ,C). The Picard group of F lr(E) is generated
by line bundles of the form Lλ(A) where λ is in P(r) and A is a line bundle on C by Lemma ??.

Fix a line bundle M = Lλ ⊗A with A ∈ PicC and λ ∈ P(λ). Let

π : Ĉ ×G/Pr → F lr(E) (12)

be the projection constructed in Theorem 5.
There is a Kähler-Einstein (hence cscK) metric ω0 in c1(Lλ), unique up to the action of G, by

results of Koszul and Matsushima [2]. Let s0 be the (constant) scalar curvature of ω0. Let ωA be a
constant scalar curvature metric such that 2π[ωA] = c1(A) with scalar curvature s1 and let ω1 be
the pullback to Ĉ. Since ω0 + ω1 is Γ-invariant, it descends to a form ω on F lr(E) with constant
scalar curvature s0 + s1.

Let V be a complex vector space of dimension rE . In order to apply a classical result of
Demazure, we regard F lr(V ) as a quotient of PGL(r, V ). Let Qr be the image of a stabiliser of an
r-flag of subspaces in PSL(rE ,C) and let qr be its Lie algebra. Also let psl(rE ,C) denote the Lie
algebra of PSL(rE ,C). We have a well known exact sequence

0 −→ (PSL(rE ,C)× qr)/Qr −→ PSL(rE ,C)/Qr × psl(rE ,C) −→ TF lr(V ) −→ 0. (13)

where Qr acts on qr by the adjoint action and TF lr(V ) is the tangent bundle.
It follows from results of Demazure and Bott [1, Section 4.8] that we have

Hi
(
F lr(V ), TF lr(V )

)
=

psl(rE ,C), if i = 0

0, otherwise.
(14)

Let p : F lr(E) → C be the projection. Since F lr(E) is Zariski locally trivial on C, this
generalises in a straightforward manner. Let h be a hermitian metric on E and let End0(E) denote
the sheaf of trace-free endomorphisms on E. Let U be a Zariski open set in C such that

F lr(E) ∼= U ×F lr(V ). (15)

We have a natural identification(
End0(E)/C

) ∣∣
U
∼= OB

∣∣
U
⊗ psl(rE ,C), (16)

where the C denotes the constant sheaf included in End0(E) as multiples of the identity. Let
VF lr(E) denote the relative tangent bundle of F lr(E) with respect to the projection p. We obtain
from Equation (14)

Rip∗VF lr(E) =

End0(E)/C if i = 0 and

0 otherwise,
(17)
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Proof of Lemma 3. We must show that the vector space H0(F lr(E), TF lr(E)) is trivial. We have
the exact sequence

0 −→ VF lr(E) −→ TF lr(E) −→ p∗TC −→ 0 (18)

where TC is the tangent bundle of the curve C. It suffices to show that H0(F lr(E),VF lr(E)) = 0

since H0(C, TC) = 0 as the genus g(C) satisfies g(C) > 1. The vector bundle E is simple, therefore
we have H0(C, End(E)) = C · IdE . The claim follows by identifying H0(C, End0(E)) as a subspace
of H0(C, End(E)).
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